JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
Oracle Solaris Studio 12.3: Debugging a Program With dbx     Oracle Solaris Studio 12.3 Information Library
search filter icon
search icon

Document Information


1.  Getting Started With dbx

2.  Starting dbx

3.  Customizing dbx

4.  Viewing and Navigating To Code

5.  Controlling Program Execution

6.  Setting Breakpoints and Traces

7.  Using the Call Stack

8.  Evaluating and Displaying Data

9.  Using Runtime Checking

Capabilities of Runtime Checking

When to Use Runtime Checking

Runtime Checking Requirements

Using Runtime Checking

Turning On Memory Use and Memory Leak Checking

Turning On Memory Access Checking

Turning On All Runtime Checking

Turning Off Runtime Checking

Running Your Program

Using Access Checking

Understanding the Memory Access Error Report

Memory Access Errors

Using Memory Leak Checking

Detecting Memory Leak Errors

Possible Leaks

Checking for Leaks

Understanding the Memory Leak Report

Generating a Leak Report

Combining Leaks

Fixing Memory Leaks

Using Memory Use Checking

Suppressing Errors

Types of Suppression

Suppression by Scope and Type

Suppression of Last Error

Limiting the Number of Errors Reported

Suppressing Error Examples

Default Suppressions

Using Suppression to Manage Errors

Using Runtime Checking on a Child Process

Using Runtime Checking on an Attached Process

On a System Running Solaris

On a System Running Linux

Using Fix and Continue With Runtime Checking

Runtime Checking Application Programming Interface

Using Runtime Checking in Batch Mode

bcheck Syntax

bcheck Examples

Enabling Batch Mode Directly From dbx

Troubleshooting Tips

Runtime Checking Limitations

Works Better With More Symbols and Debug Information

SIGSEGV and SIGALTSTACK Signals Are Restricted on x86 Platforms

Works Better When Sufficient Patch Area is Available Within 8 MB of All Existing Code (SPARC platforms only).

Runtime Checking Errors

Access Errors

Bad Free (baf) Error

Duplicate Free (duf) Error

Misaligned Free (maf) Error

Misaligned Read (mar) Error

Misaligned Write (maw) Error

Out of Memory (oom) Error

Read From Array Out-of-Bounds (rob) Error

Read From Unallocated Memory (rua) Error

Read From Uninitialized Memory (rui) Error

Write to Array Out-of-Bounds Memory (wob) Error

Write to Read-Only Memory (wro) Error

Write to Unallocated Memory (wua) Error

Memory Leak Errors

Address in Block (aib) Error

Address in Register (air) Error

Memory Leak (mel) Error

10.  Fixing and Continuing

11.  Debugging Multithreaded Applications

12.  Debugging Child Processes

13.  Debugging OpenMP Programs

14.  Working With Signals

15.  Debugging C++ With dbx

16.  Debugging Fortran Using dbx

17.  Debugging a Java Application With dbx

18.  Debugging at the Machine-Instruction Level

19.  Using dbx With the Korn Shell

20.  Debugging Shared Libraries

A.  Modifying a Program State

B.  Event Management

C.  Macros

D.  Command Reference


Capabilities of Runtime Checking

Because runtime checking is an integral debugging feature, you can perform all debugging operations while using runtime checking except collecting performance data using the Collector.

Runtime checking:

Compiling with the -g flag provides source line number correlation in the runtime checking error messages. Runtime checking can also check programs compiled with the optimization -O flag. There are some special considerations with programs not compiled with the -g option.

You can use runtime checking by using the check command.

When to Use Runtime Checking

One way to avoid seeing a large number of errors at once is to use runtime checking earlier in the development cycle, as you are developing the individual modules that make up your program. Write a unit test to drive each module and use runtime checking incrementally to check one module at a time. That way, you deal with a smaller number of errors at a time. When you integrate all of the modules into the full program, you are likely to encounter few new errors. When you reduce the number of errors to zero, you need to run runtime checking again only when you make changes to a module.

Runtime Checking Requirements

To use runtime checking, you must fulfill the following requirements:

For information on the limitations of runtime checking, see Runtime Checking Limitations.