|
Oracle Data Mining Java API Reference 11g Release 2 (11.2) E12219-03 |
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Object
oracle.dmt.jdm.OraDMObject
oracle.dmt.jdm.OraMiningObject
oracle.dmt.jdm.base.OraTask
oracle.dmt.jdm.supervised.OraTestTask
OraTestTask is an extension of the javax.datamining.supervised.TestTask. It provides extension methods to retrieve the test input data details, description for test metrics and enabling/disabling of scoring cost matrix that is added to the input model.
MiningObject, oracle.dmt.jdm.MiningObjectImpl, Task, oracle.dmt.jdm.base.TaskImpl, TestTask| Field Summary |
| Fields inherited from class oracle.dmt.jdm.OraMiningObject |
DESCRIPTION_DELIMITER |
| Fields inherited from interface oracle.dmt.jdm.OraPLSQLConstants |
abns_max_build_minutes, abns_max_nb_predictors, abns_max_predictors, abns_model_type, abns_multi_feature, abns_naive_bayes, abns_single_feature, algo_adaptive_bayes_network, algo_ai_mdl, algo_ai_mdl2, algo_apriori_association_rules, algo_decision_tree, algo_generalized_linear_model, algo_kmeans, algo_naive_bayes, algo_name, algo_nonnegative_matrix_factor, algo_ocluster, algo_predictor_variance, algo_support_vector_machines, apply_cost_content, apply_lower_content, apply_nodeid_content, apply_pred_value_content, apply_probability_content, apply_upper_content, asso_max_rule_length, asso_min_confidence, asso_min_support, association, association_in_model, attribute_importance, clas_cost_table_name, clas_priors_table_name, clas_weights_table_name, classification, clus_num_clusters, clustering, feat_num_features, feature_extraction, glms_conf_level, glms_conf_level_default, glms_diagnostics_table_name, glms_reference_class_name, glms_ridge_reg_disable, glms_ridge_reg_enable, glms_ridge_regression, glms_ridge_value, glms_vif_for_ridge, glms_vif_ridge_disable, glms_vif_ridge_enable, kmns_block_growth, kmns_conv_tolerance, kmns_cosine, kmns_distance, kmns_euclidean, kmns_fast_cosine, kmns_iterations, kmns_min_pct_attr_support, kmns_num_bins, kmns_size, kmns_split_criterion, kmns_variance, nabs_pairwise_threshold, nabs_singleton_threshold, nmfs_conv_tolerance, nmfs_num_iterations, nmfs_random_seed, ocluster_max_buffer, ocluster_sensitivity, odms_missing_value_delete_row, odms_missing_value_mean_mode, odms_missing_value_treatment, odms_row_weight_column_name, operator_equal, operator_equal_v, operator_greater_or_equal, operator_greater_or_equal_v, operator_greater_than, operator_greater_than_v, operator_in, operator_in_v, operator_less_or_equal, operator_less_or_equal_v, operator_less_than, operator_less_than_v, operator_not_equal, operator_not_equal_v, operator_not_in, operator_not_in_v, oracle_char_type, oracle_dm_nested_categoricals, oracle_dm_nested_numericals, oracle_float_type, oracle_number_type, oracle_varchar2_type, prep_auto, prep_auto_off, prep_auto_on, regression, svms_active_learning, svms_al_disable, svms_al_enable, svms_complexity_factor, svms_conv_tolerance, svms_epsilon, svms_gaussian, svms_kernel_cache_size, svms_kernel_function, svms_linear, svms_outlier_rate, svms_std_dev, tree_impurity_entropy, tree_impurity_gini, tree_impurity_metric, tree_impurity_metric_default, tree_term_max_depth, tree_term_max_depth_default, tree_term_max_depth_max, tree_term_max_depth_min, tree_term_max_surrogates_max, tree_term_max_surrogates_min, tree_term_minpct_node, tree_term_minpct_node_default, tree_term_minpct_node_max, tree_term_minpct_split, tree_term_minpct_split_default, tree_term_minpct_split_max, tree_term_minrec_node, tree_term_minrec_node_default, tree_term_minrec_split, tree_term_minrec_split_default |
| Method Summary | |
javax.datamining.data.PhysicalDataSet |
getTestData()Retrieves the test input data information from the task. |
java.lang.String |
getTestMetricsDescription()returns the description for the ClassificationTestMetrics object to be created. |
void |
setTestMetricsDescription(java.lang.String description)Sets the description for the ClassificationTestMetrics object to be created. |
boolean |
useCost()This method returns the flag that indicates the usage of the cost metric instead of probability to find the top prediction. |
void |
useCost(boolean useCost)This method specifies the flag that indicates the usage of the cost metric instead of probability to find the top prediction. |
| Methods inherited from class oracle.dmt.jdm.base.OraTask |
addDependency, dropDependency, getChildTaskNames, getParentTaskNames, overwriteOutput, overwriteOutput |
| Methods inherited from class oracle.dmt.jdm.OraMiningObject |
doBeforeStore, getCreationDate, getCreatorInfo, getName, getObjectIdentifier, saveObjectInDatabase, setDescription |
| Methods inherited from class oracle.dmt.jdm.OraDMObject |
createException, createException, createRuntimeException, createRuntimeException, getLocalizedMessage, isConnectionOpen, logInfo, logSevere, logTrace, logTrace, unsupported, unsupported |
| Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface javax.datamining.base.Task |
getExecutionHandle |
| Methods inherited from interface javax.datamining.MiningObject |
getCreationDate, getCreatorInfo, getDescription, getName, getObjectIdentifier, getObjectType, setDescription |
| Method Detail |
public javax.datamining.data.PhysicalDataSet getTestData()
throws javax.datamining.JDMException
javax.datamining.JDMExceptionpublic void useCost(boolean useCost)
ClassificationTestTask by setting this flag to true will enable model's cost matrix (if any) and uses cost metric to determine the top prediction. In this case by default is set to true.ClassificationTestMetricsTask this flag is used to specify whether the specified 'score criterion column' represents the cost or not. In this case by default is set to false.public boolean useCost()
ClassificationTestTask by setting this flag to true will enable model's cost matrix (if any) and uses cost metric to determine the top prediction. In this case by default is set to true.ClassificationTestMetricsTask this flag is used to specify whether the specified 'score criterion column' represents the cost or not. In this case by default is set to false.public java.lang.String getTestMetricsDescription()
ClassificationTestMetrics object to be created.getTestMetricsDescription in interface javax.datamining.supervised.TestTaskpublic void setTestMetricsDescription(java.lang.String description)
ClassificationTestMetrics object to be created.setTestMetricsDescription in interface javax.datamining.supervised.TestTaskdescription -
|
Oracle Data Mining Java API Reference 11g Release 2 (11.2) E12219-03 |
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||