|
Oracle Data Mining Java API Reference 11g Release 2 (11.2) E12219-03 |
|||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
A C D E F G I L M N O P Q R S T U V W Z
expression involving the attribute specified in inputAttr with corresponding optional inverseExpression.expression involving the attribute specified in inputAttr with corresponding optional inverseExpression and attrSpec.name to OraABNModelType.name to OraSplitCriterion.name to OraFeatureExtractionApplyContent.name to OraCategoricalBinningType.name to OraNumericalBinningType.name to OraClippingType.name to OraNormalizeType.AdaptiveBayesNetworkSettings initialized to system default values.AdaptiveBayesNetworkSettings with user specfied values.Interval that represents the specified interval boundaries.ClassificationApplySettings.FeatureExtractionSettings for building a Feature Extraction Model initialized to vendor-specific default values.OraTransformationTask with the specified the transformation.OraTransformationTask with the specified transformation sequenece name.OraExplainTask that is used to produce importance and ranks for the columns with respect to the explain column in the input dataset.OraExpressionTransform object.OraExpressionTransform object using the specified fixed schema expression table as an input.OraGLMClassificationSettings with default settings.OraGLMRegressionSettings with default settings.OraPredictTask that is used to produce predictions for the specified target column in the input dataset as predictions output table.OraProfileTask allows users to segment data based on some target attribute and value.OraExpressionTransform object.java.sql.ResultSet that contains the following columns: CLASS String => Target value.OraExpressionElement instance.OraExpressionTransform that is used to created the transformation sequence object.java.util.Map that contains the high-level model statistics as a key-value pair.mapByFeatureIdentifier method.true when the apply output is specified as a database view.mapByRank method.ClassificationTestMetrics object to be created.OraABNModelDetail object is created for only singleFeature models.OraABNSettings is used to specify settings for the Adaptive Bayes Network algorithm.OraABNSettings.OraAttributeType defines oracle specific attribute type called "nestedTable".OraBuildSettings instance captures the oracle extensions to the JDM standard interface javax.datamining.base.BuildSettings.OraBuildTask is an extension of the javax.datamining.task.BuildTask.OraClassificationModel extension provide static methods to add/remove cost matrix associated with the model.ClassificationSettings instance supports function settings specific to the classification mining function.ClassificationTestMetricsTask is a mining task used for computing and creating test metrics objects given an apply output data.ClassificationTestTask is a mining task used for testing a classificationmodel to measure the goodness of the model.ClusteringDistanceFunction enumerations.OraConnectionFactory is an oracle extension of javax.datamining.resource.ConnectionFactory.OraDataSetApplyTask is an extension of the javax.datamining.task.apply.DataSetApplyTask.OraExecutionHandle is an oracle extension of javax.datamining.ExecutionHandle.OraExplainTask is used to produce importance and ranks for the columns with respect to the explain column in the input dataset.OraExpressionTransform is used to specify per attribute SQL expressions for tranformation and optional reverse transformation of the data.OraExpressionElement is used to encapsulate the per attribute expression inverse expression details.OraFeature encapsulates the attribute names and its coefficients for a feature in the feature extraction model.OraFeatureExtractionAlgorithmSettings is the base class for all feature extraction algorithm settings.OraFeatureExtractionApplyContent specifies following two enumerations for apply contents.OraFeatureExtractionApplySettings captures a specification that prescribes the output of an apply task specific to a feature extraction model.OraFeatureExtractionSettings object encapsulates the following build settings specific to feature extraction.OraFeatureExtractionSettings.OraGLMClassificationSettings is used to specify settings for the GLM classification algorithm.OraGLMModelDetail provides methods to retrieve details of the Generalized Linear Model (GLM).OraGLMRegressionSettings is used to specify settings for the GLM regression algorithm.OraGLMSettings is the super interface for GLM classification and regression algorithm settings interface.OraGLMSettings.Interval.OraItemset is an extension of Itemset in the standard.OraKMeansSettings is an extension of javax.datamining.algorithm.kmeans.KMeansSettings.OraLift is an oracle extension to javax.datamining.supervised.classification.Lift class.javax.datamining.MiningAlgorithm enumeration lists the JDM standard algorithms as enumerated values.javax.datamining.MiningFunction enumeration lists the JDM standard functions as enumerated values.javax.datamining.MiningTask enumeration defines the JDM standard task types as list of enumerated values.OraModel is an extension of JDM standard javax.datamining.base.Model interface.OraNMFAlgorithmSettings is used to specify settings for the NMF Feature Extraction algorithm.OraNMFAlgorithmSettings.OraOClusterSettings encapsulates the algorithm settings that can be specified for Orthogonal Partitioning Clustering (O-Clustering).OraOClusterSettings.OraPhysicalAttributeRole defines oracle specific attribute role called "nestedTable".OraPredictTask used to produce predictions for the specified target column in the input dataset as predictions output table.OraPredictiveAnalyticsTask is the marker interface for all predictive analytics tasks.OraPredictiveAnalyticsFactory is the factory class to create predictive analytics tasks, such as predict, explain, and profile.OraProfileTask allows users to segment data based on some target attribute and value.OraRegressionApplySettings provides set and get methods to specify the target attribute normalization details.OraRegressionTestMetrics provides set and get methods to specify the target attribute normalization details.OraSVMClassificationSettings defines oracle specific SVM algorithm settings i.e., active learning and outlier rate.OraSVMRegressionSettings defines oracle specific SVM algorithm settings i.e., active learning.OraKMeansSettings supports specifying split criterion as an input.OraTask add new extension methods in 11.1 to javax.datamining.base.Task.OraTestTask is an extension of the javax.datamining.supervised.TestTask.OraTransformationFactory is the factory object used for creating transformation objects and transformation sequence object.OraTransformationSequence represents a sequence of transformations.OraTransformationTask is used to execute the specified transformation.OraTranformationTask.OraTreeSettings defines oracle specific decision tree algorithm settings i.e., minimum decrease in impurity.true when model build is set to produce Variance Inflation Factor (VIF) measure when ridge is being used This setting works only for Linear Regression.OraExpressionElement from the settings.ClassificationTestMetrics object to be created.true when the auto data preparations is turned on.true when ridge regression is enabled.true.OraABNModelType corresponding to the specified name.OraSplitCriterion corresponding to the specified name.OraFeatureExtractionApplyContent corresponding to the specified name.OraCategoricalBinningType corresponding to the specified name.OraNumericalBinningType corresponding to the specified name.OraClippingType corresponding to the specified name.OraNormalizeType corresponding to the specified name.OraABNModelType enumerations defined.OraSplitCriterion enumerations defined.OraFeatureExtractionApplyContent enumerations defined.OraCategoricalBinningType enumerations defined.OraNumericalBinningType enumerations defined.OraClippingType enumerations defined.OraNormalizeType enumerations defined.A C D E F G I L M N O P Q R S T U V W Z
|
Oracle Data Mining Java API Reference 11g Release 2 (11.2) E12219-03 |
|||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||