MySQL 5.7 Reference Manual Including MySQL NDB Cluster 7.5 and NDB Cluster 7.6

13.1.20 CREATE TRIGGER Statement

    [DEFINER = user]
    TRIGGER trigger_name
    trigger_time trigger_event
    ON tbl_name FOR EACH ROW

trigger_time: { BEFORE | AFTER }

trigger_event: { INSERT | UPDATE | DELETE }

trigger_order: { FOLLOWS | PRECEDES } other_trigger_name

This statement creates a new trigger. A trigger is a named database object that is associated with a table, and that activates when a particular event occurs for the table. The trigger becomes associated with the table named tbl_name, which must refer to a permanent table. You cannot associate a trigger with a TEMPORARY table or a view.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names within a schema. Triggers in different schemas can have the same name.

This section describes CREATE TRIGGER syntax. For additional discussion, see Section 23.3.1, “Trigger Syntax and Examples”.

CREATE TRIGGER requires the TRIGGER privilege for the table associated with the trigger. If the DEFINER clause is present, the privileges required depend on the user value, as discussed in Section 23.6, “Stored Object Access Control”. If binary logging is enabled, CREATE TRIGGER might require the SUPER privilege, as discussed in Section 23.7, “Stored Program Binary Logging”.

The DEFINER clause determines the security context to be used when checking access privileges at trigger activation time, as described later in this section.

trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that the trigger activates before or after each row to be modified.

Basic column value checks occur prior to trigger activation, so you cannot use BEFORE triggers to convert values inappropriate for the column type to valid values.

trigger_event indicates the kind of operation that activates the trigger. These trigger_event values are permitted:

The trigger_event does not represent a literal type of SQL statement that activates the trigger so much as it represents a type of table operation. For example, an INSERT trigger activates not only for INSERT statements but also LOAD DATA statements because both statements insert rows into a table.

A potentially confusing example of this is the INSERT INTO ... ON DUPLICATE KEY UPDATE ... syntax: a BEFORE INSERT trigger activates for every row, followed by either an AFTER INSERT trigger or both the BEFORE UPDATE and AFTER UPDATE triggers, depending on whether there was a duplicate key for the row.


Cascaded foreign key actions do not activate triggers.

It is possible to define multiple triggers for a given table that have the same trigger event and action time. For example, you can have two BEFORE UPDATE triggers for a table. By default, triggers that have the same trigger event and action time activate in the order they were created. To affect trigger order, specify a trigger_order clause that indicates FOLLOWS or PRECEDES and the name of an existing trigger that also has the same trigger event and action time. With FOLLOWS, the new trigger activates after the existing trigger. With PRECEDES, the new trigger activates before the existing trigger.

trigger_body is the statement to execute when the trigger activates. To execute multiple statements, use the BEGIN ... END compound statement construct. This also enables you to use the same statements that are permitted within stored routines. See Section 13.6.1, “BEGIN ... END Compound Statement”. Some statements are not permitted in triggers; see Section 23.8, “Restrictions on Stored Programs”.

Within the trigger body, you can refer to columns in the subject table (the table associated with the trigger) by using the aliases OLD and NEW. OLD.col_name refers to a column of an existing row before it is updated or deleted. NEW.col_name refers to the column of a new row to be inserted or an existing row after it is updated.

Triggers cannot use NEW.col_name or use OLD.col_name to refer to generated columns. For information about generated columns, see Section, “CREATE TABLE and Generated Columns”.

MySQL stores the sql_mode system variable setting in effect when a trigger is created, and always executes the trigger body with this setting in force, regardless of the current server SQL mode when the trigger begins executing.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at trigger activation time. If the DEFINER clause is present, the user value should be a MySQL account specified as 'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The permitted user values depend on the privileges you hold, as discussed in Section 23.6, “Stored Object Access Control”. Also see that section for additional information about trigger security.

If the DEFINER clause is omitted, the default definer is the user who executes the CREATE TRIGGER statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

MySQL takes the DEFINER user into account when checking trigger privileges as follows:

Within a trigger body, the CURRENT_USER function returns the account used to check privileges at trigger activation time. This is the DEFINER user, not the user whose actions caused the trigger to be activated. For information about user auditing within triggers, see Section 6.2.18, “SQL-Based Account Activity Auditing”.

If you use LOCK TABLES to lock a table that has triggers, the tables used within the trigger are also locked, as described in LOCK TABLES and Triggers.

For additional discussion of trigger use, see Section 23.3.1, “Trigger Syntax and Examples”.