1/15
Contents
List of Examples
List of Figures
List of Tables
Title and Copyright Information
Preface
Audience
Documentation Accessibility
Related Documents
Conventions
Part I Oracle Big Data Spatial and Graph Overview
1
Big Data Spatial and Graph Overview
1.1
About Big Data Spatial and Graph
1.2
Spatial Features
1.3
Property Graph Features
1.3.1
Property Graph Sizing Recommendations
1.4
Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance
1.5
Installing and Configuring the Big Data Spatial Image Processing Framework
1.5.1
Installing Image Processing Framework for Oracle Big Data Appliance Distribution
1.5.2
Installing the Image Processing Framework for Other Distributions (Not Oracle Big Data Appliance)
1.5.2.1
Prerequisites for Installing the Image Processing Framework for Other Distributions
1.5.2.2
Installing the Image Processing Framework for Other Distributions
1.5.2.3
Configuring the environment
1.5.3
Post-installation Verification of the Image Processing Framework
1.5.3.1
Image Loading Test Script
1.5.3.2
Image Processor Test Script
1.6
Installing and Configuring the Big Data Spatial Image Server
1.6.1
Installing and Configuring the Image Server for Oracle Big Data Appliance
1.6.1.1
Prerequisites for installing Image Server on Oracle Big Data Appliance
1.6.1.2
Installing Image Server Web on an Oracle Big Data Appliance
1.6.1.3
Configuring the Environment
1.6.2
Installing and Configuring the Image Server Web for Other Systems (Not Big Data Appliance)
1.6.2.1
Prerequisites for Installing the Image Server on Other Systems
1.6.2.2
Installing the Image Server Web on Other Systems
1.6.2.3
Configuring the Environment
1.6.3
Post-installation Verification Example for the Image Server Console
1.6.3.1
Loading images from the local server to HDFS Hadoop cluster
1.6.3.2
Creating a mosaic image and catalog
1.7
Installing Oracle Big Data Spatial Hadoop Vector Console
1.7.1
Assumptions and Prerequisite Libraries
1.7.1.1
Assumptions
1.7.1.2
Prerequisite Libraries
1.7.2
Installing Spatial Hadoop Vector Console on Oracle Big Data Appliance
1.7.3
Installing Spatial Hadoop Vector Console for Other Systems (Not Big Data Appliance)
1.7.4
Configuring Spatial Hadoop Vector Console on Oracle Big Data Appliance
1.7.5
Configuring Spatial Hadoop Vector Console for Other Systems (Not Big Data Appliance)
1.8
Installing Property Graph Support on a CDH Cluster or Other Hardware
1.8.1
Apache HBase Prerequisites
1.8.2
Property Graph Installation Steps
1.8.3
About the Property Graph Installation Directory
1.8.4
Optional Installation Task for In-Memory Analytics
1.8.4.1
Installing and Configuring Hadoop
1.8.4.2
Running In-Memory Analytics on Hadoop
Part II Big Data Spatial and Graph on Apache Hadoop
2
Using Big Data Spatial and Graph with Spatial Data
2.1
About Big Data Spatial and Graph Support for Spatial Data
2.1.1
What is Big Data Spatial and Graph on Apache Hadoop?
2.1.2
Advantages of Oracle Big Data Spatial and Graph
2.1.3
Oracle Big Data Spatial Features and Functions
2.1.4
Oracle Big Data Spatial Files, Formats, and Software Requirements
2.2
Oracle Big Data Vector and Raster Data Processing
2.2.1
Oracle Big Data Spatial Raster Data Processing
2.2.2
Oracle Big Data Spatial Vector Data Processing
2.3
Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data Processing
2.3.1
Image Loader
2.3.2
Image Processor
2.3.3
Image Server
2.4
Loading an Image to Hadoop Using the Image Loader
2.4.1
Image Loading Job
2.4.2
Input Parameters
2.4.3
Output Parameters
2.5
Processing an Image Using the Oracle Spatial Hadoop Image Processor
2.5.1
Image Processing Job
2.5.2
Input Parameters
2.5.2.1
Catalog XML Structure
2.5.2.2
Mosaic definition XML Structure
2.5.3
Job Execution
2.5.4
Processing Classes and ImageBandWritable
2.5.4.1
Location of the Classes and Jar Files
2.5.5
Output
2.6
Oracle Big Data Spatial Vector Analysis
2.6.1
Spatial Indexing
2.6.1.1
Spatial Indexing Class Structure
2.6.1.2
Configuration for Creating a Spatial Index
2.6.1.3
Input Formats for Spatial Index
2.6.1.4
MVSuggest for Locating Records
2.6.2
Spatial Filtering
2.6.2.1
Filtering Records
2.6.3
Classifying Data Hierarchically
2.6.3.1
Changing the Hierarchy Level Range
2.6.3.2
Controlling the Search Hierarchy
2.6.3.3
Using MVSuggest to Classify the Data
2.6.4
Generating Buffers
2.6.5
RecordInfoProvider
2.6.5.1
Sample RecordInfo Implementation
2.6.5.2
LocalizableRecordInfoProvider
2.6.6
HierarchyInfo
2.6.6.1
Sample HierarchyInfo Implementation
2.6.7
Using JGeometry in MapReduce Jobs
2.6.8
Tuning Performance Data of Job Running Times using Vector Analysis API
2.7
Using Oracle Big Data Spatial and Graph Vector Console
2.7.1
Creating a Spatial Index Using the Console
2.7.2
Running a Hierarchy Job Using the Console
2.7.3
Viewing the Index Results
2.7.4
Creating Results Manually
2.7.5
Creating and Deleting templates
2.7.6
Configuring Templates
2.7.7
Running a Job to Create an Index Using the Command Line
2.7.8
Running a Job to Perform a Spatial Filtering
2.7.9
Running a Job to Create a Hierarchy Result
2.7.10
Running a Job to Generate Buffer
2.8
Using Oracle Big Data Spatial and Graph Image Server Console
2.8.1
Loading Images to HDFS Hadoop Cluster to Create a Mosaic
Part III Property Graphs
3
Configuring Property Graph Support
3.1
Tuning the Software Configuration
3.1.1
Tuning Apache HBase for Use With Property Graphs
3.1.1.1
Modifying the Apache HBase Configuration
3.1.1.2
Modifying the Java Memory Settings
3.1.2
Tuning Oracle NoSQL Database for Use with Property Graphs
4
Using Property Graphs in a Big Data Environment
4.1
About Property Graphs
4.1.1
What Are Property Graphs?
4.1.2
What Is Big Data Support for Property Graphs?
4.1.2.1
Analytics Layer
4.1.2.2
Data Access Layer
4.1.2.3
Storage Management
4.1.2.4
RESTful Web Services
4.2
Getting Started With Property Graphs
4.3
About Property Graph Data Formats
4.3.1
GraphML Data Format
4.3.2
GraphSON Data Format
4.3.3
GML Data Format
4.3.4
Oracle Flat File Format
4.4
Using Java APIs for Property Graph Data
4.4.1
Overview of the Java APIs
4.4.1.1
Oracle Big Data Spatial and Graph Java APIs
4.4.1.2
TinkerPop Blueprints Java APIs
4.4.1.3
Apache Hadoop Java APIs
4.4.1.4
Oracle NoSQL Database Java APIs
4.4.1.5
Apache HBase Java APIs
4.4.2
Opening and Closing a Property Graph Instance
4.4.2.1
Using Oracle NoSQL Database
4.4.2.2
Using Apache HBase
4.4.3
Creating the Vertices
4.4.4
Creating the Edges
4.4.5
Deleting the Vertices and Edges
4.4.6
Dropping a Property Graph
4.4.6.1
Using Oracle NoSQL Database
4.4.6.2
Using Apache HBase
4.5
Managing Text Indexing for Property Graph Data
4.5.1
Using Automatic Indexes with the Apache Lucene Search Engine
4.5.2
Using Manual Indexes with the SolrCloud Search Engine
4.5.3
Handling Data Types
4.5.3.1
Appending Data Type Identifiers on Apache Lucene
4.5.3.2
Appending Data Type Identifiers on SolrCloud
4.5.4
Uploading a Collection's SolrCloud Configuration to Zookeeper
4.5.5
Updating Configuration Settings on Text Indexes for Property Graph Data
4.6
Property Graph Support for Secure Oracle NoSQL Database
4.7
Using the Groovy Shell with Property Graph Data
4.8
Exploring the Sample Programs
4.8.1
About the Sample Programs
4.8.2
Compiling and Running the Sample Programs
4.8.3
About the Example Output
4.8.4
Example: Creating a Property Graph
4.8.5
Example: Dropping a Property Graph
4.8.6
Examples: Adding and Dropping Vertices and Edges
4.9
Oracle Flat File Format Definition
4.9.1
About the Property Graph Description Files
4.9.2
Vertex File
4.9.3
Edge File
4.9.4
Encoding Special Characters
4.9.5
Example Property Graph in Oracle Flat File Format
4.10
Example Python User Interface
5
Using In-Memory Analytics
5.1
Reading a Graph into Memory
5.1.1
Starting the In-Memory Analytics Shell
5.1.2
Using the Shell Help
5.1.3
Providing Graph Metadata in a Configuration File
5.1.4
Reading Graph Data into Memory
5.1.4.1
Read a Graph Stored in Apache HBase into Memory
5.1.4.2
Read a Graph Stored in Oracle NoSQL Database into Memory
5.1.4.3
Read a Graph Stored in the Local File System into Memory
5.2
Reading Custom Graph Data
5.2.1
Creating a Simple Graph File
5.2.2
Adding a Vertex Property
5.2.3
Using Strings as Node Identifiers
5.2.4
Adding an Edge Property
5.3
Storing Graph Data on Disk
5.3.1
Storing the Results of Analysis in a Node Property
5.3.2
Storing a Graph in Edge-List Format on Disk
5.4
Executing Built-in Algorithms
5.4.1
About In-Memory Analytics
5.4.2
About the Analyst Interface
5.4.3
Reading the Graph
5.4.4
Running the Triangle Counting Algorithm
5.4.5
Running the Pagerank Algorithm
5.5
Creating Subgraphs
5.5.1
About Filter Expressions
5.5.2
Using a Simple Filter to Create a Subgraph
5.5.3
Using a Complex Filter to Create a Subgraph
5.5.4
Using a Node List to Create a Bipartite Subgraph
5.6
Deploying to Jetty
5.6.1
About the Authentication Mechanism
5.7
Deploying to Apache Tomcat
5.8
Deploying to Oracle WebLogic Server
5.8.1
Installing Oracle WebLogic Server
5.8.2
Deploying In-Memory Analytics
5.8.3
Verifying That the Server Works
5.9
Connecting to the In-Memory Analytics Server
5.9.1
Connecting with the In-Memory Analytics Shell
5.9.1.1
About Logging HTTP Requests
5.9.2
Connecting with Java
5.9.3
Connecting with an HTTP Request
5.10
Reading and Storing Data in HDFS
5.10.1
Loading Data from HDFS
5.10.2
Storing Graph Snapshots in HDFS
5.10.3
Compiling and Running a Java Application in Hadoop
5.11
Running In-Memory Analytics as a YARN Application
5.11.1
Starting and Stopping In-Memory Analytics Services
5.11.1.1
Configuring the In-Memory Analytics YARN Client
5.11.1.2
Starting a New In-Memory Analytics Service
5.11.1.3
About Long-Running In-Memory Analytics Services
5.11.1.4
Stopping In-Memory Analytics Services
5.11.2
Connecting to In-Memory Analytics Services
5.11.3
Monitoring In-Memory Analytics Services
5.12
Using the Java API Inside the In-Memory Analytics Shell
A
Third-Party Licenses for Bundled Software
A.1
Apache Licensed Code
A.2
ANTLR 3
A.3
AOP Alliance
A.4
Apache Commons CLI
A.5
Apache Commons Codec
A.6
Apache Commons Collections
A.7
Apache Commons Configuration
A.8
Apache Commons IO
A.9
Apache Commons Lang
A.10
Apache Commons Logging
A.11
Apache fluent
A.12
Apache Groovy
A.13
Apache htrace
A.14
Apache HTTP Client
A.15
Apache HTTPComponents Core
A.16
Apache Jena
A.17
Apache Log4j
A.18
Apache Lucene
A.19
Apache Xerces2
A.20
Apache xml-commons
A.21
Cloudera CDH
A.22
Fastutil
A.23
GeoNames Data
A.24
Geospatial Data Abstraction Library (GDAL)
A.25
Google Guava
A.26
Google Guice
A.27
Google protobuf
A.28
Jackson
A.29
Jansi
A.30
Jettison
A.31
JLine
A.32
Javassist
A.33
Jung
A.34
MessagePack
A.35
Netty
A.36
Slf4j
A.37
Tinkerpop Blueprints
A.38
Tinkerpop Gremlin
A.39
Tinkerpop Pipes
Scripting on this page enhances content navigation, but does not change the content in any way.