Package | Description |
---|---|
oracle.pgx.api.mllib |
This package contains graph machine learning tools for use with PGX.
|
oracle.pgx.config.mllib |
This package contains APIs to all graph machine learning features of PGX.
|
Modifier and Type | Method and Description |
---|---|
GraphWiseConvLayerConfig |
GraphWiseConvLayerConfigBuilder.build()
Build the configuration
|
GraphWiseConvLayerConfig[] |
EdgeWiseModel.getConvLayerConfigs()
Gets the configuration objects for the convolutional layers
|
GraphWiseConvLayerConfig[] |
GraphWiseModel.getConvLayerConfigs()
Gets the configuration objects for the convolutional layers
|
Modifier and Type | Method and Description |
---|---|
Self |
WiseModelBuilder.setConvLayerConfigs(GraphWiseConvLayerConfig... layerConfigs)
Set the convolutional layer configurations (See
GraphWiseConvLayerConfig ). |
Modifier and Type | Field and Description |
---|---|
static GraphWiseConvLayerConfig[] |
GraphWiseBaseModelConfig.DEFAULT_CONV_LAYER_CONFIGS
two default initialized layer configs (See
GraphWiseConvLayerConfig ) |
Modifier and Type | Method and Description |
---|---|
GraphWiseConvLayerConfig[] |
GraphWiseBaseModelConfig.getConvLayerConfigs() |
Modifier and Type | Method and Description |
---|---|
void |
GraphWiseBaseModelConfig.setConvLayerConfigs(GraphWiseConvLayerConfig... convLayerConfigs) |
Constructor and Description |
---|
EdgeWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, boolean fitted, double trainingLoss, int vertexInputFeatureDim, int edgeInputFeatureDim, java.util.List<java.util.Set<java.lang.String>> targetEdgeLabelSets, GraphWiseBaseModelConfig.Backend backend, java.lang.Integer edgeEmbeddingDim, EdgeWiseModelConfig.EdgeWiseConvModelVariant variant, EdgeCombinationMethod edgeCombinationMethod) |
GraphWiseBaseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, boolean fitted, double trainingLoss, int vertexInputFeatureDim, int edgeInputFeatureDim, GraphWiseBaseModelConfig.Backend backend) |
GraphWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, boolean fitted, double trainingLoss, int vertexInputFeatureDim, int edgeInputFeatureDim, java.util.List<java.util.Set<java.lang.String>> targetVertexLabelSets, GraphWiseBaseModelConfig.Backend backend, GraphWiseModelConfig.GraphConvModelVariant variant) |
SupervisedEdgeWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer edgeEmbeddingDim, java.lang.Integer seed, GraphWiseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.List<java.util.Set<java.lang.String>> targetEdgeLabelSets, boolean fitted, double trainingLoss, int inputFeatureDim, int edgeInputFeatureDim, oracle.pgx.config.mllib.SupervisedEdgeWiseModelConfig.LossFunction lossFunction, LossFunction lossFunctionClass, BatchGenerator batchGenerator, GraphWisePredictionLayerConfig[] predictionLayerConfigs, boolean normalize, java.lang.String edgeTargetPropertyName, LabelMaps labelMaps, GraphWiseBaseModelConfig.Backend backend, EdgeCombinationMethod edgeCombinationMethod, EdgeWiseModelConfig.EdgeWiseConvModelVariant variant) |
SupervisedGraphWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.List<java.util.Set<java.lang.String>> targetVertexLabelSets, boolean fitted, double trainingLoss, int inputFeatureDim, int edgeInputFeatureDim, oracle.pgx.config.mllib.SupervisedGraphWiseModelConfig.LossFunction lossFunction, LossFunction lossFunctionClass, BatchGenerator batchGenerator, GraphWisePredictionLayerConfig[] predictionLayerConfigs, boolean normalize, java.lang.String vertexTargetPropertyName, LabelMaps labelMaps, GraphWiseBaseModelConfig.Backend backend, GraphWiseModelConfig.GraphConvModelVariant variant) |
UnsupervisedGraphWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.List<java.util.Set<java.lang.String>> targetVertexLabels, boolean fitted, double trainingLoss, int inputFeatureDim, int inputEdgeFeatureDim, UnsupervisedGraphWiseModelConfig.LossFunction lossFunction, GraphWiseDgiLayerConfig dgiLayerConfig, GraphWiseBaseModelConfig.Backend backend, GraphWiseModelConfig.GraphConvModelVariant variant) |