Class EmbedTextDetails.Builder
- java.lang.Object
-
- com.oracle.bmc.generativeaiinference.model.EmbedTextDetails.Builder
-
- Enclosing class:
- EmbedTextDetails
public static class EmbedTextDetails.Builder extends Object
-
-
Constructor Summary
Constructors Constructor Description Builder()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description EmbedTextDetailsbuild()EmbedTextDetails.BuildercompartmentId(String compartmentId)The OCID of compartment in which to call the Generative AI service to create text embeddings.EmbedTextDetails.Buildercopy(EmbedTextDetails model)EmbedTextDetails.BuilderembeddingTypes(List<EmbedTextDetails.EmbeddingTypes> embeddingTypes)Specifies the types of embeddings you want to get back.EmbedTextDetails.Builderinputs(List<String> inputs)Provide a list of strings or one base64 encoded image with input_type setting to IMAGE.EmbedTextDetails.BuilderinputType(EmbedTextDetails.InputType inputType)Specifies the input type.EmbedTextDetails.BuilderisEcho(Boolean isEcho)Whether or not to include the original inputs in the response.EmbedTextDetails.BuilderoutputDimensions(Integer outputDimensions)The number of dimensions of the output embedding.EmbedTextDetails.BuilderservingMode(ServingMode servingMode)EmbedTextDetails.Buildertruncate(EmbedTextDetails.Truncate truncate)For an input that’s longer than the maximum token length, specifies which part of the input text will be truncated.
-
-
-
Method Detail
-
inputs
public EmbedTextDetails.Builder inputs(List<String> inputs)
Provide a list of strings or one base64 encoded image with input_type setting to IMAGE.If text embedding, each string can be words, a phrase, or a paragraph. The maximum length of each string entry in the list is 512 tokens.
- Parameters:
inputs- the value to set- Returns:
- this builder
-
servingMode
public EmbedTextDetails.Builder servingMode(ServingMode servingMode)
-
compartmentId
public EmbedTextDetails.Builder compartmentId(String compartmentId)
The OCID of compartment in which to call the Generative AI service to create text embeddings.- Parameters:
compartmentId- the value to set- Returns:
- this builder
-
isEcho
public EmbedTextDetails.Builder isEcho(Boolean isEcho)
Whether or not to include the original inputs in the response.Results are index-based.
- Parameters:
isEcho- the value to set- Returns:
- this builder
-
embeddingTypes
public EmbedTextDetails.Builder embeddingTypes(List<EmbedTextDetails.EmbeddingTypes> embeddingTypes)
Specifies the types of embeddings you want to get back.Supports list of enums. Supported values :float, int8, uint8, binary, ubinary, base64. If nothing is passed default will be considered as float.
- Parameters:
embeddingTypes- the value to set- Returns:
- this builder
-
outputDimensions
public EmbedTextDetails.Builder outputDimensions(Integer outputDimensions)
The number of dimensions of the output embedding.This is only available for embed-v4 and newer models. Possible values are 256, 512, 1024, and 1536.
- Parameters:
outputDimensions- the value to set- Returns:
- this builder
-
truncate
public EmbedTextDetails.Builder truncate(EmbedTextDetails.Truncate truncate)
For an input that’s longer than the maximum token length, specifies which part of the input text will be truncated.- Parameters:
truncate- the value to set- Returns:
- this builder
-
inputType
public EmbedTextDetails.Builder inputType(EmbedTextDetails.InputType inputType)
Specifies the input type.- Parameters:
inputType- the value to set- Returns:
- this builder
-
build
public EmbedTextDetails build()
-
copy
public EmbedTextDetails.Builder copy(EmbedTextDetails model)
-
-