JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
System Administration Guide: IP Services     Oracle Solaris 11 Express 11/10
search filter icon
search icon

Document Information


Part I TCP/IP Administration

1.  Planning an IPv4 Addressing Scheme (Tasks)

2.  Planning an IPv6 Addressing Scheme (Overview)

3.  Planning an IPv6 Network (Tasks)

4.  Configuring TCP/IP Network Services and IPv4 Addressing (Tasks)

5.  Enabling IPv6 on a Network (Tasks)

6.  Administering a TCP/IP Network (Tasks)

7.  Configuring IP Tunnels

8.  Troubleshooting Network Problems (Tasks)

9.  TCP/IP and IPv4 in Depth (Reference)

10.  IPv6 in Depth (Reference)

IPv6 Addressing Formats Beyond the Basics

6to4-Derived Addresses

6to4-Derived Addressing on a Host

IPv6 Multicast Addresses in Depth

IPv6 Packet Header Format

IPv6 Extension Headers

Dual-Stack Protocols

Oracle Solaris IPv6 Implementation

IPv6 Configuration Files

ndpd.conf Configuration File

/etc/inet/ipaddrsel.conf Configuration File

IPv6-Related Commands

ipaddrsel Command

6to4relay Command

netstat Command Modifications for IPv6 Support

snoop Command Modifications for IPv6 Support

route Command Modifications for IPv6 Support

ping Command Modifications for IPv6 Support

traceroute Command Modifications for IPv6 Support

IPv6-Related Daemons

in.ndpd Daemon, for Neighbor Discovery

in.ripngd Daemon, for IPv6 Routing

inetd Daemon and IPv6 Services

IPv6 Neighbor Discovery Protocol

ICMP Messages From Neighbor Discovery

Autoconfiguration Process

Obtaining a Router Advertisement

Prefix Configuration Variables

Address Uniqueness

Neighbor Solicitation and Unreachability

Duplicate Address Detection Algorithm

Proxy Advertisements

Inbound Load Balancing

Link-Local Address Change

Comparison of Neighbor Discovery to ARP and Related IPv4 Protocols

IPv6 Routing

Router Advertisement

Router Advertisement Prefixes

Router Advertisement Messages

IPv6 Extensions to Oracle Solaris Name Services

DNS Extensions for IPv6

Changes to the nsswitch.conf File

Changes to Name Service Commands

NFS and RPC IPv6 Support

IPv6 Over ATM Support


11.  About DHCP (Overview)

12.  Planning for DHCP Service (Tasks)

13.  Configuring the DHCP Service (Tasks)

14.  Administering DHCP (Tasks)

15.  Configuring and Administering the DHCP Client

16.  Troubleshooting DHCP (Reference)

17.  DHCP Commands and Files (Reference)

Part III IP Security

18.  IP Security Architecture (Overview)

19.  Configuring IPsec (Tasks)

20.  IP Security Architecture (Reference)

21.  Internet Key Exchange (Overview)

22.  Configuring IKE (Tasks)

23.  Internet Key Exchange (Reference)

24.  IP Filter in Oracle Solaris (Overview)

25.   IP Filter (Tasks)

Part IV Networking Performance

26.  Integrated Load Balancer Overview

27.  Configuration of Integrated Load Balancer Tasks

28.  Virtual Router Redundancy Protocol (Overview)

29.  VRRP Configuration (Tasks)

30.  Implementing Congestion Control

Part V IP Quality of Service (IPQoS)

31.  Introducing IPQoS (Overview)

32.  Planning for an IPQoS-Enabled Network (Tasks)

33.  Creating the IPQoS Configuration File (Tasks)

34.  Starting and Maintaining IPQoS (Tasks)

35.  Using Flow Accounting and Statistics Gathering (Tasks)

36.  IPQoS in Detail (Reference)



IPv6 Packet Header Format

The IPv6 protocol defines a set of headers, including the basic IPv6 header and the IPv6 extension headers. The following figure shows the fields that appear in the IPv6 header and the order in which the fields appear.

Figure 10-3 IPv6 Basic Header Format

Diagram shows that the 128 bit IPv6 header consist of eight fields, including the source and destination addresses.

The following list describes the function of each header field.

IPv6 Extension Headers

IPv6 options are placed in separate extension headers that are located between the IPv6 header and the transport-layer header in a packet. Most IPv6 extension headers are not examined or processed by any router along a packet's delivery path until the packet arrives at its final destination. This feature provides a major improvement in router performance for packets that contain options. In IPv4, the presence of any options requires the router to examine all options.

Unlike IPv4 options, IPv6 extension headers can be of arbitrary length. Also, the number of options that a packet carries is not limited to 40 bytes. This feature, in addition to the manner in which IPv6 options are processed, permits IPv6 options to be used for functions that are not practical in IPv4.

To improve performance when handling subsequent option headers, and the transport protocol that follows, IPv6 options are always an integer multiple of 8 octets long. The integer multiple of 8 octets retains the alignment of subsequent headers.

The following IPv6 extension headers are currently defined: