JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
Linker and Libraries Guide
search filter icon
search icon

Document Information

Preface

1.  Introduction to the Oracle Solaris Link Editors

2.  Link-Editor

3.  Runtime Linker

4.  Shared Objects

Naming Conventions

Recording a Shared Object Name

Inclusion of Shared Objects in Archives

Recorded Name Conflicts

Shared Objects With Dependencies

Dependency Ordering

Shared Objects as Filters

Generating Standard Filters

Generating Auxiliary Filters

Filtering Combinations

Filtee Processing

Performance Considerations

Analyzing Files With elfdump

Underlying System

Lazy Loading of Dynamic Dependencies

Position-Independent Code

SPARC: -K pic and -K PIC Options

Remove Unused Material

Maximizing Shareability

Move Read-Only Data to Text

Collapse Multiply-Defined Data

Use Automatic Variables

Allocate Buffers Dynamically

Minimizing Paging Activity

Relocations

Symbol Lookup

When Relocations are Performed

Combined Relocation Sections

Copy Relocations

Using the -B symbolic Option

Profiling Shared Objects

5.  Application Binary Interfaces and Versioning

6.  Support Interfaces

7.  Object File Format

8.  Thread-Local Storage

9.  Mapfiles

A.  Link-Editor Quick Reference

B.  Versioning Quick Reference

C.  Establishing Dependencies with Dynamic String Tokens

D.  Direct Bindings

E.  System V Release 4 (Version 1) Mapfiles

F.  Linker and Libraries Updates and New Features

Index

Dependency Ordering

When dynamic executables and shared objects have dependencies on the same common shared objects, the order in which the objects are processed can become less predictable.

For example, assume a shared object developer generates libfoo.so.1 with the following dependencies.

$ ldd libfoo.so.1
        libA.so.1 =>     ./libA.so.1
        libB.so.1 =>     ./libB.so.1
        libC.so.1 =>     ./libC.so.1

If you create a dynamic executable prog, using this shared object, and define an explicit dependency on libC.so.1, the resulting shared object order will be as follows.

$ cc -o prog main.c -R. -L. -lC -lfoo
$ ldd prog
        libC.so.1 =>     ./libC.so.1
        libfoo.so.1 =>   ./libfoo.so.1
        libA.so.1 =>     ./libA.so.1
        libB.so.1 =>     ./libB.so.1

Any requirement on the order of processing the shared object libfoo.so.1 dependencies would be compromised by the construction of the dynamic executable prog.

Developers who place special emphasis on symbol interposition and .init section processing should be aware of this potential change in shared object processing order.