JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
Solaris Dynamic Tracing Guide
search filter icon
search icon

Document Information


1.  Introduction

2.  Types, Operators, and Expressions

3.  Variables

4.  D Program Structure

5.  Pointers and Arrays

6.  Strings

7.  Structs and Unions

8.  Type and Constant Definitions

9.  Aggregations

10.  Actions and Subroutines

11.  Buffers and Buffering

12.  Output Formatting

13.  Speculative Tracing

14.  dtrace(1M) Utility

15.  Scripting

16.  Options and Tunables

17.  dtrace Provider

18.  lockstat Provider


Adaptive Lock Probes

Spin Lock Probes

Thread Locks

Readers/Writer Lock Probes


19.  profile Provider

20.  fbt Provider

21.  syscall Provider

22.  sdt Provider

23.  sysinfo Provider

24.  vminfo Provider

25.  proc Provider

26.  sched Provider

27.  io Provider

28.  mib Provider

29.  fpuinfo Provider

30.  pid Provider

31.  plockstat Provider

32.  fasttrap Provider

33.  User Process Tracing

34.  Statically Defined Tracing for User Applications

35.  Security

36.  Anonymous Tracing

37.  Postmortem Tracing

38.  Performance Considerations

39.  Stability

40.  Translators

41.  Versioning




The lockstat provider makes available two kinds of probes: contention-event probes and hold-event probes.

Contention-event probes correspond to contention on a synchronization primitive, and fire when a thread is forced to wait for a resource to become available. Solaris is generally optimized for the non-contention case, so prolonged contention is not expected. These probes should be used to understand those cases where contention does arise. Because contention is relatively rare, enabling contention-event probes generally doesn't substantially affect performance.

Hold-event probes correspond to acquiring, releasing, or otherwise manipulating a synchronization primitive. These probes can be used to answer arbitrary questions about the way synchronization primitives are manipulated. Because Solaris acquires and releases synchronization primitives very often (on the order of millions of times per second per CPU on a busy system), enabling hold-event probes has a much higher probe effect than does enabling contention-event probes. While the probe effect induced by enabling them can be substantial, it is not pathological; they may still be enabled with confidence on production systems.

The lockstat provider makes available probes that correspond to the different synchronization primitives in Solaris; these primitives and the probes that correspond to them are discussed in the remainder of this chapter.