JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
Solaris Dynamic Tracing Guide
search filter icon
search icon

Document Information


1.  Introduction

2.  Types, Operators, and Expressions

3.  Variables

4.  D Program Structure

Probe Clauses and Declarations

Probe Descriptions



Use of the C Preprocessor

5.  Pointers and Arrays

6.  Strings

7.  Structs and Unions

8.  Type and Constant Definitions

9.  Aggregations

10.  Actions and Subroutines

11.  Buffers and Buffering

12.  Output Formatting

13.  Speculative Tracing

14.  dtrace(1M) Utility

15.  Scripting

16.  Options and Tunables

17.  dtrace Provider

18.  lockstat Provider

19.  profile Provider

20.  fbt Provider

21.  syscall Provider

22.  sdt Provider

23.  sysinfo Provider

24.  vminfo Provider

25.  proc Provider

26.  sched Provider

27.  io Provider

28.  mib Provider

29.  fpuinfo Provider

30.  pid Provider

31.  plockstat Provider

32.  fasttrap Provider

33.  User Process Tracing

34.  Statically Defined Tracing for User Applications

35.  Security

36.  Anonymous Tracing

37.  Postmortem Tracing

38.  Performance Considerations

39.  Stability

40.  Translators

41.  Versioning



Use of the C Preprocessor

The C programming language used for defining Solaris system interfaces includes a preprocessor that performs a set of initial steps in C program compilation. The C preprocessor is commonly used to define macro substitutions where one token in a C program is replaced with another predefined set of tokens, or to include copies of system header files. You can use the C preprocessor in conjunction with your D programs by specifying the dtrace -C option. This option causes dtrace to first execute the cpp(1) preprocessor on your program source file and then pass the results to the D compiler. The C preprocessor is described in more detail in The C Programming Language.

The D compiler automatically loads the set of C type descriptions associated with the operating system implementation, but you can use the preprocessor to include other type definitions such as types used in your own C programs. You can also use the preprocessor to perform other tasks such as creating macros that expand to chunks of D code and other program elements. If you use the preprocessor with your D program, you may only include files that contain valid D declarations. Typical C header files include only external declarations of types and symbols, which will be correctly interpreted by the D compiler. The D compiler cannot parse C header files that include additional program elements like C function source code and will produce an appropriate error message.