oraclesai.preprocessing.SpatialImputer
- class SpatialImputer(missing_values=nan, spatial_weights_definition=None, strategy='mean')
Fill all the missing values using the values from the neighbors for each observation.
- Parameters:
missing_values – int, float, str, np.nan, None or pandas.NA, default=np.nan. The placeholder for the missing values. All occurrences of
missing_valueswill be imputedspatial_weights_definition – SpatialWeightsDefinition, default=None. Spatial relationship specification
strategy – {“mean”, “median”, “maximum”, “minimum”}, default=”mean”. It calculates the specified statistic from the neighbors to fill the missing value.
Methods
__init__([missing_values, ...])fit(X[, y, geometries, spatial_weights])Calculate the spatial weights according to
spatial_weights_definition.fit_transform(X[, y, geometries])Fit to data, then transform it.
get_params([deep])Get parameters for this estimator.
set_params(**params)Set the parameters of this estimator.
transform(X[, y, geometries, ...])Returns a NumPy array with the data passed as parameter filled according to the specified strategy.
Attributes
A boolean array with True in those cells with missing values, and False anywhere else