1.2 Raster Data Sources

Raster data is collected and used by a variety of geographic information technologies, including remote sensing, airborne photogrammetry, cartography, and global positioning systems.

The collected data is then analyzed by digital image processing systems, computer graphics applications, and computer vision technologies. These technologies use several data formats and create a variety of products.

This section briefly describes some of the main data sources and uses for GeoRaster, focusing on concepts and techniques you need to be aware of in developing applications. It does not present detailed explanations of the technologies; you should consult standard textbooks and reference materials for that information.

1.2.1 Remote Sensing

Remote sensing obtains information about an area or object through a device that is not physically connected to the area or object. For example, the sensor might be in a satellite, balloon, airplane, boat, or ground station. The sensor device can be any of a variety of devices, including a frame camera, pushbroom (swath) imager, synthetic aperture radar (SAR), hydrographic sonar, or paper or film scanner. Remote sensing applications include environmental assessment and monitoring, global change detection and monitoring, and natural resource surveying.

The data collected by remote sensing is often called geoimagery. The wavelength, number of bands, and other factors determine the radiometric characteristics of the geoimages. The geoimages can be single-band, multiband, or hyperspectral, all of which can be managed by GeoRaster. These geoimages can cover any area of the Earth (especially for images sensed by satellite). The temporal resolution can be high, such as with meteorological satellites, making it easier to detect changes. For remote sensing applications, various types of resolution (temporal, spatial, spectral, and radiometric) are often important.

1.2.2 Photogrammetry

Photogrammetry derives metric information from measurements made on photographs. Most photogrammetry applications use airborne photos or high-resolution images collected by satellite remote sensing. In traditional photogrammetry, the main data includes images such as black and white photographs, color photographs, and stereo photograph pairs.

Photogrammetry rigorously establishes the geometric relationship between the image and the object as it existed at the time of the imaging event, and enables you to derive information about the object from its imagery. The relationship between image and object can be established by several means, which can be grouped in two categories: analog (using optical, mechanical, and electronic components) or analytical (where the modeling is mathematical and the processing is digital). Analog solutions are increasingly being replaced by analytical/digital solutions, which are also referred to as softcopy photogrammetry.

The main product from a softcopy photogrammetry system may include digital elevation models (DEMs) and orthoimagery. GeoRaster can manage all this raster data, together with its georeferencing information.

1.2.3 Geographic Information Systems

A geographic information system (GIS) captures, stores, and processes geographically referenced information. GIS software has traditionally been either vector-based or raster-based; however, with the GeoRaster feature, Oracle Spatial handles both raster and vector data.

Raster-based GIS systems typically process georectified gridded data. Gridded data can be discrete or continuous. Discrete data, such as political subdivisions, land use and cover, bus routes, and oil wells, is usually stored as integer grids. Continuous data, such as elevation, aspect, pollution concentration, ambient noise level, and wind speed, is usually stored as floating-point grids. GeoRaster can store all this data.

The attributes of a discrete grid layer are stored in a relational table called a value attribute table (VAT). A VAT contains columns specified by the GIS vendor, and may also contain user-defined columns. The VAT can be stored in the Oracle database as a plain table. The VAT name can be registered within the corresponding GeoRaster object so that raster GIS applications can use the table.

1.2.4 Cartography

Cartography is the science of creating maps, which are two-dimensional representations of the three-dimensional Earth (or of a non-Earth space using a local coordinate system). Today, maps are digitized or scanned into digital forms, and map production is largely automated. Maps stored on a computer can be queried, analyzed, and updated quickly.

There are many types of maps, corresponding to a variety of uses or purposes. Examples of map types include base (background), thematic, relief (three-dimensional), aspect, cadastral (land use), and inset. Maps usually contain several annotation elements to help explain the map, such as scale bars, legends, symbols (such as the north arrow), and labels (names of cities, rivers, and so on).

Maps can be stored in raster format (and thus can be managed by GeoRaster), in vector format, or in a hybrid format.

1.2.5 Digital Image Processing

Digital image processing is used to process raster data in standard image formats, such as TIFF, GIF, JFIF (JPEG), as well as in many geoimage formats, such as NITF, GeoTIFF, ERDAS IMG, and PCI PIX. Image processing techniques are widely used in remote sensing and photogrammetry applications. These techniques are used as needed to enhance, correct, and restore images to facilitate interpretation; to correct for any blurring, distortion, or other degradation that may have occurred; and to classify geo-objects automatically and identify targets. The source, intermediate, and result imagery can be loaded and managed by GeoRaster.

1.2.6 Geology, Geophysics, and Geochemistry

Geology, geophysics, and geochemistry all use digital data and produce some digital raster maps that can be managed by GeoRaster.

  • In geology, the data includes regional geological maps, stratum maps, and rock slide pictures. In geological exploration and petroleum geology, computerized geostratum simulation, synthetic mineral prediction, and 3-D oil field characterization, all of which involve raster data, are widely used.

  • In geophysics, data about gravity, the magnetic field, seismic wave transportation, and other subjects is saved, along with georeferencing information.

  • In geochemistry, the contents of multiple chemical elements can be analyzed and measured. The triangulated irregular network (TIN) technique is often used to produce raster maps for further analysis, and image processing is widely used.