JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
Writing Device Drivers     Oracle Solaris 11 Express 11/10
search filter icon
search icon

Document Information

Preface

Part I Designing Device Drivers for the Oracle Solaris Platform

1.  Overview of Oracle Solaris Device Drivers

2.  Oracle Solaris Kernel and Device Tree

3.  Multithreading

4.  Properties

5.  Managing Events and Queueing Tasks

6.  Driver Autoconfiguration

7.  Device Access: Programmed I/O

8.  Interrupt Handlers

9.  Direct Memory Access (DMA)

10.  Mapping Device and Kernel Memory

11.  Device Context Management

12.  Power Management

Power Management Framework

Device Power Management

System Power Management

Device Power Management Model

Power Management Components

Multiple Power Management Components

Power Management States

Power Levels

Power Management Dependencies

Automatic Power Management for Devices

Device Power Management Interfaces

Busy-Idle State Transitions

Device Power State Transitions

power() Entry Point

System Power Management Model

Autoshutdown Threshold

Busy State

Hardware State

Automatic Power Management for Systems

Entry Points Used by System Power Management

detach() Entry Point

attach() Entry Point

Power Management Device Access Example

Power Management Flow of Control

Changes to Power Management Interfaces

13.  Hardening Oracle Solaris Drivers

14.  Layered Driver Interface (LDI)

Part II Designing Specific Kinds of Device Drivers

15.  Drivers for Character Devices

16.  Drivers for Block Devices

17.  SCSI Target Drivers

18.  SCSI Host Bus Adapter Drivers

19.  Drivers for Network Devices

20.  USB Drivers

Part III Building a Device Driver

21.  Compiling, Loading, Packaging, and Testing Drivers

22.  Debugging, Testing, and Tuning Device Drivers

23.  Recommended Coding Practices

Part IV Appendixes

A.  Hardware Overview

B.  Summary of Oracle Solaris DDI/DKI Services

C.  Making a Device Driver 64-Bit Ready

D.  Console Frame Buffer Drivers

Index

Chapter 12

Power Management

Power management provides the ability to control and manage the electrical power usage of a computer system or device. Power management enables systems to conserve energy by using less power when idle and by shutting down completely when not in use. For example, desktop computer systems can use a significant amount of power and often are left idle, particularly at night. Power management software can detect that the system is not being used. Accordingly, power management can power down the system or some of its components.

This chapter provides information on the following subjects: