Oracle® Solaris Cluster Concepts Guide

Exit Print View

Updated: July 2014, E39575-01
 
 

Characteristics of Scalable Services

A set of criteria determines whether an application can become a scalable service. To determine if your application can become a scalable service, see Analyzing the Application for Suitability in Oracle Solaris Cluster Data Services Developer’s Guide .

    This set of criteria is summarized as follows:

  • First, such a service is composed of one or more server instances. Each instance runs on a different node. Two or more instances of the same service cannot run on the same node.

  • Second, if the service provides an external logical data store, you must exercise caution. Concurrent access to this store from multiple server instances must be synchronized to avoid losing updates or reading data as it's being changed. Note the use of “external” to distinguish the store from in-memory state. The term “logical” indicates that the store appears as a single entity, although it might itself be replicated. Furthermore, in this data store, when any server instance updates the data store, this update is immediately “seen” by other instances.

    The Oracle Solaris Cluster software provides such an external storage through its cluster file system and its global raw partitions. As an example, suppose a service writes new data to an external log file or modifies existing data in place. When multiple instances of this service run, each instance has access to this external log, and each might simultaneously access this log. Each instance must synchronize its access to this log, or else the instances interfere with each other. The service could use ordinary Oracle Solaris file locking through fcntl and lockf to achieve the synchronization that you want.

    Another example of this type of store is a back-end database. This type of back-end database server provides built-in synchronization by using database query or update transactions. Therefore, multiple server instances do not need to implement their own synchronization.

    Oracle's Sun IMAP server is an example of a service that is not a scalable service. The service updates a store, but that store is private and when multiple IMAP instances write to this store, they overwrite each other because the updates are not synchronized. The IMAP server must be rewritten to synchronize concurrent access.

  • Finally, note that instances can have private data that is disjoint from the data of other instances. In such a case, the service does not need synchronized concurrent access because the data is private, and only that instance can manipulate it. In this case, you must be careful not to store this private data under the cluster file system because this data can become globally accessible.