Table of Contents
- Title and Copyright Information
 - Preface
 - 1 About Oracle Machine Learning for Python
 - 2 Install OML4Py Client for Linux for Use With Autonomous Database on Serverless Exadata Infrastructure
 - 
               
               
                  
                  3
                      Install OML4Py for On-Premises Databases
               
                  
               
               
               
- 3.1 OML4Py On Premises System Requirements
 - 3.2 Build and Install Python for Linux for On-Premises Databases
 - 3.3 Install the Required Supporting Packages for Linux for On-Premises Databases
 - 
                     
                     
                        
                        3.4
                            Install OML4Py
                        Server for On-Premises Oracle Database
                     
                        
                     
                     
                     
- 3.4.1 Install OML4Py Server for Linux for On-Premises Oracle Database 19c
 - 3.4.2 Install OML4Py Server for Linux for On-Premises Oracle Database 21c
 - 3.4.3 Verify OML4Py Server Installation for On-Premises Database
 - 3.4.4 Grant Users the Required Privileges for On-Premises Database
 - 3.4.5 Create New Users for On-Premises Oracle Database
 - 3.4.6 Uninstall the OML4Py Server from an On-Premises Database 19c
 
 - 3.5 Install OML4Py Client for On-Premises Databases
 
 - 4 Install OML4Py on Exadata
 - 5 Install Third-Party Packages
 - 6 Get Started with Oracle Machine Learning for Python
 - 7 Prepare and Explore Data
 - 
               
               
                  
                  8
                      OML4Py Classes That Provide
                  Access to In-Database Machine Learning Algorithms
               
                  
               
               
               
- 8.1 About Machine Learning Classes and Algorithms
 - 8.2 About Model Settings
 - 8.3 Shared Settings
 - 8.4 Export Oracle Machine Learning for Python Models
 - 8.5 Automatic Data Preparation
 - 8.6 Model Explainability
 - 8.7 Attribute Importance
 - 8.8 Association Rules
 - 8.9 Decision Tree
 - 8.10 Expectation Maximization
 - 8.11 Explicit Semantic Analysis
 - 8.12 Generalized Linear Model
 - 8.13 k-Means
 - 8.14 Naive Bayes
 - 8.15 Neural Network
 - 8.16 Random Forest
 - 8.17 Singular Value Decomposition
 - 8.18 Support Vector Machine
 
 - 9 Automated Machine Learning
 - 
               
               
                  
                  10
                      Embedded Python
                  Execution
               
                  
               
               
               
- 10.1 About Embedded Python Execution
 - 10.2 Parallelism with OML4Py Embedded Python Execution
 - 10.3 Embedded Python Execution Views
 - 
                     
                     
                        
                        10.4
                            Python API for Embedded Python
                        Execution
                     
                        
                     
                     
                     
- 10.4.1 About Embedded Python Execution
 - 10.4.2 Run a User-Defined Python Function
 - 10.4.3 Run a User-Defined Python Function on the Specified Data
 - 10.4.4 Run a Python Function on Data Grouped By Column Values
 - 10.4.5 Run a User-Defined Python Function on Sets of Rows
 - 10.4.6 Run a User-Defined Python Function Multiple Times
 - 10.4.7 Save and Manage User-Defined Python Functions in the Script Repository
 
 - 
                     
                     
                        
                        10.5
                            SQL API for Embedded Python Execution with
                        On-premises Database
                     
                        
                     
                     
                     
- 10.5.1 About the SQL API for Embedded Python Execution with On-Premises Database
 - 10.5.2 pyqEval Function (On-Premises Database)
 - 10.5.3 pyqTableEval Function (On-Premises Database)
 - 10.5.4 pyqRowEval Function (On-Premises Database)
 - 10.5.5 pyqGroupEval Function (On-Premises Database)
 - 10.5.6 pyqGrant Function (On-Premises Database)
 - 10.5.7 pyqRevoke Function (On-Premises Database)
 - 10.5.8 pyqScriptCreate Procedure (On-Premises Database)
 - 10.5.9 pyqScriptDrop Procedure (On-Premises Database)
 
 - 
                     
                     
                        
                        10.6
                            SQL API for Embedded Python Execution with
                        Autonomous Database
                     
                        
                     
                     
                     
- 10.6.1 Access and Authorization Procedures and Functions
 - 
                           
                           
                              
                              10.6.2
                                  Embedded Python Execution
                              Functions (Autonomous Database)
                           
                              
                           
                           
                           
- 10.6.2.1 pyqListEnvs Function (Autonomous Database)
 - 10.6.2.2 pyqEval Function (Autonomous Database)
 - 10.6.2.3 pyqTableEval Function (Autonomous Database)
 - 10.6.2.4 pyqRowEval Function (Autonomous Database)
 - 10.6.2.5 pyqGroupEval Function (Autonomous Database)
 - 10.6.2.6 pyqIndexEval Function (Autonomous Database)
 - 10.6.2.7 pyqGrant Function (Autonomous Database)
 - 10.6.2.8 pyqRevoke Function (Autonomous Database)
 - 10.6.2.9 pyqScriptCreate Procedure (Autonomous Database)
 - 10.6.2.10 pyqScriptDrop Procedure (Autonomous Database)
 
 - 10.6.3 Asynchronous Jobs (Autonomous Database)
 - 10.6.4 Special Control Arguments (Autonomous Database)
 - 10.6.5 Output Formats (Autonomous Database)
 
 
 - 11 Administrative Tasks for Oracle Machine Learning for Python
 - Index