JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
Oracle® ZFS Storage Appliance Administration Guide
Oracle Technology Network
Library
PDF
Print View
Feedback
search filter icon
search icon

Document Information

Using This Documentation

Chapter 1 Oracle ZFS Storage Appliance Overview

Chapter 2 Status

Chapter 3 Initial Configuration

Chapter 4 Network Configuration

Chapter 5 Storage Configuration

Chapter 6 Storage Area Network Configuration

Chapter 7 User Configuration

Chapter 8 Setting ZFSSA Preferences

Chapter 9 Alert Configuration

Chapter 10 Cluster Configuration

Cluster Features and Benefits

Cluster Disadvantages

Cluster Terminology

Understanding Clustering

Cluster Interconnect I/O

Understanding Cluster Resource Management

Cluster Takeover and Failback

Configuration Changes in a Clustered Environment

Clustering Considerations for Storage

Clustering Considerations for Networking

Private Local IP Interfaces

Clustering Considerations for Infiniband

Clustering Redundant Path Scenarios

Preventing 'Split-Brain' Conditions

Estimating and Reducing Takeover Impact

Cluster Configuration Using the BUI

Configuring Clustering

Unconfiguring Clustering

Configuring Clustering Using the CLI

Shutting Down a Clustered Configuration

Shutdown the Stand-by Head

Unconfiguring Clustering

Cluster Node Cabling

ZS3-2 Cluster Cabling

ZS3-4 and 7x20 Cluster Cabling

Storage Shelf Cabling

Cluster Configuration BUI Page

Chapter 11 ZFSSA Services

Chapter 12 Shares, Projects, and Schema

Chapter 13 Replication

Chapter 14 Shadow Migration

Chapter 15 CLI Scripting

Chapter 16 Maintenance Workflows

Chapter 17 Integration

Index

Cluster Interconnect I/O

All inter-head communication consists of one or more messages transmitted over one of the three cluster I/O links provided by the CLUSTRON hardware (see illustration below). This device offers two low-speed serial links and one Ethernet link. The use of serial links allows for greater reliability; Ethernet links may not be serviced quickly enough by a system under extremely heavy load. False failure detection and unwanted takeover are the worst way for a clustered system to respond to load; during takeover, requests will not be serviced and will instead be enqueued by clients, leading to a flood of delayed requests after takeover in addition to already heavy load. The serial links used by the Oracle ZFS Storage Appliances are not susceptible to this failure mode. The Ethernet link provides a higher-performance transport for non-heartbeat messages such as rejoin synchronization and provides a backup heartbeat.

All three links are formed using ordinary straight-through EIA/TIA-568B (8-wire, Gigabit Ethernet) cables. To allow for the use of straight-through cables between two identical controllers, the cables must be used to connect opposing sockets on the two connectors as shown below in the section on cabling.

Figure 10-2  ZS3-2 Controller Cluster I/O Ports

image:ZFSSA controller cluster I/O ports Table 10-1  ZS3-2 Controller Cluster I/O Ports
Figure Legend
1 Serial 0
2 Serial Activity LED
3 Serial Status LED
4 Ethernet
5 Serial 1
6 Ethernet Status LED
7 Ethernet Activity LED

Figure 10-3  ZS3-4 and 7x20 Controller Cluster I/O Ports

image:ZS3-4 and 7x20 controller cluster I/O ports

Figure 2. ZS3-4 and 7x20 controller cluster I/O ports

Table 10-2  ZS3-4 and 7x20 Controller Cluster I/O Ports
Figure Legend
1 Serial 1
2 Serial 0
3 Serial Status LED
4 Ethernet Status LED
5 Ethernet
6 Ethernet Activity LED

Clustered heads only communicate with each other over the secure private network established by the cluster interconnects, and never over network interfaces intended for service or administration. Messages fall into two general categories: regular heartbeats used to detect the failure of a remote head, and higher-level traffic associated with the resource manager and the cluster management subsystem. Heartbeats are sent, and expected, on all three links; they are transmitted continuously at fixed intervals and are never acknowledged or retransmitted as all heartbeats are identical and contain no unique information. Other traffic may be sent over any link, normally the fastest available at the time of transmission, and this traffic is acknowledged, verified, and retransmitted as required to maintain a reliable transport for higher-level software.

Regardless of its type or origin, every message is sent as a single 128-byte packet and contains a data payload of 1 to 68 bytes and a 20-byte verification hash to ensure data integrity. The serial links run at 115200 bps with 9 data bits and a single start and stop bit; the Ethernet link runs at 1Gbps. Therefore the effective message latency on the serial links is approximately 12.2ms. Ethernet latency varies greatly; while typical latencies are on the order of microseconds, effective latencies to the appliance management software can be much higher due to system load.

Normally, heartbeat messages are sent by each head on all three cluster I/O links at 50ms intervals. Failure to receive any message is considered link failure after 200ms (serial links) or 500ms (Ethernet links). If all three links have failed, the peer is assumed to have failed; takeover arbitration will be performed. In the case of a panic, the panicking head will transmit a single notification message over each of the serial links; its peer will immediately begin takeover regardless of the state of any other links. Given these characteristics, the clustering subsystem normally can detect that its peer has failed within:

All of the values described in this section are fixed; as an appliance, the Oracle ZFS Storage Appliance does not offer the ability (nor is there any need) to tune these parameters. They are considered implementation details and are provided here for informational purposes only. They may be changed without notice at any time.


Note -  To avoid data corruption after a physical re-location of a cluster, verify that all cluster cabling is installed correctly in the new location. For more information, see Preventing 'Split-Brain' Conditions