# Sequential convergence in ${C}_{p}\left(X\right)$

Commentationes Mathematicae Universitatis Carolinae (1994)

- Volume: 35, Issue: 2, page 371-382
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topFremlin, David H.. "Sequential convergence in $C_p(X)$." Commentationes Mathematicae Universitatis Carolinae 35.2 (1994): 371-382. <http://eudml.org/doc/247575>.

@article{Fremlin1994,

abstract = {I discuss the number of iterations of the elementary sequential closure operation required to achieve the full sequential closure of a set in spaces of the form $C_p(X)$.},

author = {Fremlin, David H.},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {sequential convergence; $C_p(X)$; sequential convergence; sequential closure of sets; normed spaces},

language = {eng},

number = {2},

pages = {371-382},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {Sequential convergence in $C_p(X)$},

url = {http://eudml.org/doc/247575},

volume = {35},

year = {1994},

}

TY - JOUR

AU - Fremlin, David H.

TI - Sequential convergence in $C_p(X)$

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 1994

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 35

IS - 2

SP - 371

EP - 382

AB - I discuss the number of iterations of the elementary sequential closure operation required to achieve the full sequential closure of a set in spaces of the form $C_p(X)$.

LA - eng

KW - sequential convergence; $C_p(X)$; sequential convergence; sequential closure of sets; normed spaces

UR - http://eudml.org/doc/247575

ER -

## References

top- Bourgain J., New classes of ${\mathcal{L}}_{p}$ spaces, Springer, 1981 (Lecture Notes in Mathematics 889). MR0639014
- Day M.M., Normed Spaces, Springer, 1962. Zbl0316.46010
- van Douwen E.K., The integers and topology, pp. 111-167 in 11. Zbl0561.54004MR0776622
- Dugundji J., An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367. (1951) Zbl0043.38105MR0044116
- Engelking R., General Topology, Heldermann, 1989. Zbl0684.54001MR1039321
- Fremlin D.H., Supplement to “Convergent sequences in ${C}_{p}\left(X\right)$”, University of Essex Mathematics Department Research Report 92-14.
- Gerlits J., Nagy Z., Some properties of $C\left(X\right)$, Topology Appl. 14 (1982), 151-161. (1982) Zbl0503.54020MR0667661
- Jameson G.J.O., Topology and Normed Spaces, Chapman & Hall, 1974. Zbl0285.46002MR0463890
- Kechris A.S., Louveau A., Descriptive Set Theory and Sets of Uniqueness, Cambridge U.P., 1987. MR0953784
- Köthe G., Topologische Lineare Räume, Springer, 1960. MR0130551
- Kunen K., Vaughan J.E., Handbook of Set-Theoretic Topology, North-Holland, 1984. Zbl0674.54001MR0776619
- Kuratowski K., Topology, vol I., Academic, 1966. Zbl0849.01044MR0217751
- Miller A.W., On the length of Borel hierarchies, Ann. Math. Logic 16 (1979), 233-267. (1979) Zbl0415.03038MR0548475

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.