Copyright © 2016, 2020, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=doccac.

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
Table of contents

Contents

Chapter 1 Welcome to Oracle Cloud Infrastructure .. 10
 Getting Started with Oracle Cloud Infrastructure! .. 10
 About the Services ... 10
 Accessing Oracle Cloud Infrastructure .. 13
 How Do I Get Started? .. 13
 Key Concepts and Terminology .. 13
 Oracle Cloud Infrastructure Free Tier... 16
 Free Trial .. 16
 Always Free Resources ... 16
 Upgrading to a Paid Account ... 17
 Additional Information ... 17

Chapter 2 Request and Manage Free Oracle Cloud Promotions 18
 Estimate Your Monthly Cost ... 18
 Example: Estimating Your Monthly Cost for Oracle Database Cloud Service 19
 Save and Share Your Cost Estimator Results .. 19
 Sign Up for the Free Oracle Cloud Promotion ... 20
 Monitor the Credit Balance for Your Free Oracle Cloud Promotion 21
 What Happens When the Promotion Expires .. 21
 Upgrade Your Free Oracle Cloud Promotion .. 22

Chapter 3 Buy an Oracle Cloud Subscription .. 24
 About Bring Your Own License Subscriptions ... 24
 About Universal Credits .. 24
 Upgrade Your Free Oracle Cloud Promotion .. 25
 Activate Your Order from Your Welcome Email 25
 Verify That Your Services Are Ready .. 26

Chapter 4 Request and Manage the Oracle Startup Program 28
 Sign Up for the Oracle Startup Program .. 28

Chapter 5 Understanding the Sign-In Options ... 30
 About the Sign In Options ... 30
 When to Use Each Sign-In Option .. 32
 More Information About Managing Users in Oracle Cloud Identity Providers 34

Chapter 6 Signing In to the Console ... 36
 Supported Browsers ... 36
 Signing In for the First Time ... 36
 About the Console URL ... 36
 List of regional Console URLs ... 37
 Next Steps ... 37
Table of contents

Chapter 7 Using the Oracle Cloud Infrastructure Console......................38
 Understanding Compartments..38
 Start Exploring..39
 Understanding Compartments..39
 Navigating to Oracle Cloud Infrastructure Services.......................................40
 Navigating to More Oracle Cloud Services from the Console.......................43
 Filtering the Displayed List of Resources..44
 Switching Regions..45
 Working Across Regions..46
 Switching Languages...47
 Entering Information to the Console...48
 Chat Online with an Oracle Representative..48
 Signing Out..48

**Chapter 9 Changing Your Password..54
 To Change Your Password..54
 Procedure for Oracle Identity Cloud Service users..54
 Procedure for local Oracle Cloud Infrastructure users.................................55

**Chapter 10 Checking Your Balance and Usage..58
 Required IAM Policy...58
 Let users analyze costs..58
 Working with Costs Analysis Tools...58
 To filter costs by dates...58
 To filter costs by tags...58
 To filter costs by compartments...59
 To remove a compartment or tag filter..59
 Changing Your Payment Method..59
 Required IAM Policy...59
 Upgrade Your Free Account..59
 Terminating Your Account...60

**Chapter 11 Adding Users...62
 About Users, Groups, and Policies...62
 About Oracle Identity Cloud Service Federated Users.....................................62
 Sample Users and Groups...62
 Add a User with Oracle Cloud Administrator Permissions............................63
 Create a Cloud Administrator user...63
 Create a Compartment and Add a User with Access to It..............................63
 Create a sandbox compartment..63
 Create an Oracle Cloud Infrastructure group...64
 Create a policy..64
 Create an Oracle Identity Cloud Service group..64
 Map the Oracle Identity Cloud Service Group to the Oracle Cloud Infrastructure group...65
 Create a user..65

Chapter 12 Tutorial - Launching Your First Instance..............................66
 Task Flow to Launch an Instance..67
 Creating a Key Pair...67
 Before You Begin..67
<table>
<thead>
<tr>
<th>Chapter 13 Tutorial - Launching Your First Windows Instance</th>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Flow to Launch a Windows Instance</td>
<td>79</td>
</tr>
<tr>
<td>Choosing a Compartment</td>
<td>79</td>
</tr>
<tr>
<td>Before You Begin</td>
<td>79</td>
</tr>
<tr>
<td>Choosing a Compartment</td>
<td>79</td>
</tr>
<tr>
<td>Creating a Virtual Cloud Network</td>
<td>80</td>
</tr>
<tr>
<td>Before You Begin</td>
<td>80</td>
</tr>
<tr>
<td>Create a Cloud Network Plus Related Resources</td>
<td>81</td>
</tr>
<tr>
<td>Edit the Default Security List to Allow Traffic to Your Windows Instance</td>
<td>81</td>
</tr>
<tr>
<td>What's Next</td>
<td>82</td>
</tr>
<tr>
<td>Launching a Windows Instance</td>
<td>82</td>
</tr>
<tr>
<td>Before You Begin</td>
<td>82</td>
</tr>
<tr>
<td>Launching an Instance</td>
<td>82</td>
</tr>
<tr>
<td>Getting the Instance Public IP Address</td>
<td>83</td>
</tr>
<tr>
<td>Connecting to Your Windows Instance</td>
<td>84</td>
</tr>
<tr>
<td>Before You Begin</td>
<td>84</td>
</tr>
<tr>
<td>Connecting to Your Windows Instance from a Remote Desktop Client</td>
<td>84</td>
</tr>
<tr>
<td>Running Administrative Tasks on the Instance</td>
<td>84</td>
</tr>
<tr>
<td>What's Next</td>
<td>84</td>
</tr>
<tr>
<td>Adding a Block Volume to a Windows Instance</td>
<td>84</td>
</tr>
<tr>
<td>Creating a Volume</td>
<td>84</td>
</tr>
<tr>
<td>Attaching the Volume to an Instance</td>
<td>85</td>
</tr>
<tr>
<td>Connecting to the Volume</td>
<td>85</td>
</tr>
<tr>
<td>What's Next</td>
<td>86</td>
</tr>
<tr>
<td>Cleaning Up Resources from the Tutorial</td>
<td>86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 14 Getting Started with the Command Line Interface</th>
<th>88</th>
</tr>
</thead>
<tbody>
<tr>
<td>Getting Started with the Command Line Interface</td>
<td>88</td>
</tr>
<tr>
<td>About the Command Line Interface (CLI)</td>
<td>88</td>
</tr>
<tr>
<td>Before You Begin</td>
<td>89</td>
</tr>
</tbody>
</table>
Table of contents

Understand the Infrastructure Prerequisites... 132
Learn About Service-Specific Differences and Workflows...133
REST API Endpoints for Platform Services.. 133

Chapter 20 Getting Started with Oracle Applications... 136
Support for Oracle Applications.. 136

Chapter 21 Setting Up Your Tenancy... 138
Create a Plan... 138
Understanding Compartments.. 138
Consider Who Should Have Access to Which Resources... 139
Sample Approaches to Setting Up Compartments ...140
Create compartments to align with your company projects..140

Chapter 22 Contacting Support... 142
Contacting Support... 142
1. Use a search engine.. 142
2. Post a question to our forums... 142
3. Open a support service request.. 143
Using Oracle Support for the First Time.. 147
Creating an Oracle Single Sign On (SSO) Account.. 147
Third-Party Federation and Provisioning.. 148
Linking an IAM User to a My Oracle Support Account.. 148
Registering your CSI for Oracle Cloud Infrastructure.. 149
Finding Your Customer Support Identifier (CSI).. 149

Chapter 23 Frequently Asked Questions... 152
How do I get to my IDCS console?.. 152
My team needs reports that were only available from My Services. How can I get back to the old dashboard?.. 152
Where can I find more information about the changes to other task workflows and navigation?............. 153
What URLs can I use to sign in to the Oracle Cloud Infrastructure Console?... 153
How do I find my tenancy home region?... 153
What are my Oracle Cloud Infrastructure account service limits (or resource quotas) and can I request more?.. 153
Where do I find information about what APIs are available?... 154
What browsers can I use with the Console?.. 154
Why can't I sign in using Firefox? .. 154
 How do I know if I am in Private Browsing mode?.. 154
How do I change my password?.. 154
How do I reset my password if I forget it?... 155
How do I get support?.. 155
Where do I find my Tenancy OCID?.. 155

Glossary.. 158
Chapter 1

Welcome to Oracle Cloud Infrastructure

This chapter provides brief descriptions of Oracle Cloud Infrastructure features and resources.

Introduction

Oracle Cloud Infrastructure is a set of complementary cloud services that enable you to build and run a wide range of applications and services in a highly available hosted environment. Oracle Cloud Infrastructure offers high-performance compute capabilities (as physical hardware instances) and storage capacity in a flexible overlay virtual network that is securely accessible from your on-premises network.

About the Services

Analytics Cloud empowers business analysts and consumers with modern, AI-powered, self-service analytics capabilities for data preparation, visualization, enterprise reporting, augmented analysis, and natural language processing.

API Gateway enables you to create governed HTTP/S interfaces for other services, including Oracle Functions, Oracle Cloud Infrastructure Container Engine for Kubernetes, and Oracle Cloud Infrastructure Registry. API Gateway also provides policy enforcement such as authentication and rate-limiting to HTTP/S endpoints.

Application Migration simplifies the migration of applications from Oracle Cloud Infrastructure Classic to Oracle Cloud Infrastructure.

Archive Storage lets you preserve cold data in a cost-efficient manner.

Audit provides visibility into activities related to your Oracle Cloud Infrastructure resources and tenancy. Audit log events can be used for security audits, to track usage of and changes to Oracle Cloud Infrastructure resources, and to help ensure compliance with standards or regulations.

Big Data provides enterprise-grade Hadoop as a service, with end-to-end security, high performance, and ease of management and upgradeability.

Block Volume provides high-performance network storage capacity that supports a broad range of I/O intensive workloads. You can use block volumes to expand the storage capacity of your compute instances, to provide durable and persistent data storage that can be migrated across compute instances, and to host large databases.

Blockchain Platform Cloud enables creation of managed, permissioned-blockchain networks for secure, real-time data sharing and trusted transactions among business partners.

Cloud Guard is a cloud-native service that helps customers monitor, identify, achieve, and maintain a strong security posture on Oracle Cloud. Use the service to examine your Oracle Cloud Infrastructure resources for security weakness related to configuration, and your Oracle Cloud Infrastructure operators and users for risky activities. Upon detection, Cloud Guard can suggest, assist, or take corrective actions, based on your configuration.

Use **Compute** to provision and manage compute instances. You can launch an Oracle bare metal compute resource in minutes. Provision instances as needed to deploy and run your applications, just as you would in your on-premises data center. Managed virtual machine (VM) instances are also available for workloads that don't require dedicated physical servers or the high-performance of bare metal instances.
Container Engine for Kubernetes helps you define and create Kubernetes clusters to enable the deployment, scaling, and management of containerized applications.

Content and Experience is a cloud-based content hub to drive omni-channel content management and accelerate experience delivery. It offers powerful collaboration and workflow management capabilities to streamline the creation and delivery of content and improve customer and employee engagement.

Data Catalog is a collaborative metadata management solution that lets you be more insightful about the data you have in Oracle Cloud and beyond. With Data Catalog, data consumers can easily find, understand, govern, and track Oracle Cloud data assets.

Data Flow is a fully managed service with a rich user interface to allow developers and data scientists to create, edit, and run Apache Spark applications at any scale without the need for clusters, an operations team, or highly specialized Spark knowledge. As a fully managed service, there is no infrastructure to deploy or manage. It is entirely driven by REST APIs, giving easy integration with applications or workflows.

Data Integration is a fully managed service that helps data engineers and ETL developers with common extract, load, and transform (ETL) tasks such as ingesting data from a variety of data assets, cleansing, transforming, and reshaping that data, and then efficiently loading it to target data assets.

Data Safe is a fully-integrated Cloud service focused on the security of your data. It provides a complete and integrated set of features for protecting sensitive and regulated data in Oracle Cloud databases. Features include Security Assessment, User Assessment, Data Discovery, Data Masking, and Activity Auditing.

Data Science is a platform for data scientists to build, train, and manage machine learning models on Oracle Cloud Infrastructure, using Python and open source machine learning libraries. Teams of data scientists can organize their work and access data and computing resources in this collaborative environment.

Data Transfer lets you migrate large volumes of data to Oracle Cloud Infrastructure.

Database lets you easily build, scale, and secure Oracle databases with license-included pricing in your Oracle Cloud Infrastructure cloud. You create databases on DB Systems, which are bare metal servers with local NVMe flash storage. You launch a DB System the same way you do a bare metal instance, you just add some additional configuration parameters. You can then use your existing tools, Recovery Manager (RMAN), and the database CLI to manage your databases in the cloud the same way you manage them on-premises. To get started with the Database, see “Overview of the Database Service,” in the Oracle Cloud Infrastructure User Guide.

Digital Assistant is a platform that allows you to create and deploy digital assistants, which are AI-driven interfaces that help users accomplish a variety of tasks in natural language conversations.

Edge Services encompasses several services that allow you to manage, secure, and maintain your domains and endpoints.

Email Delivery is an email sending service that provides a fast and reliable managed solution for sending high-volume emails that need to reach your recipients. Email Delivery provides the tools necessary to send application-generated email for mission-critical communications such as receipts, fraud detection alerts, multi-factor identity verification, and password resets.

The Events service helps to create automation in your tenancy.

File Storage allows you to create a scalable, distributed, enterprise-grade network file system. File Storage supports NFSv3 with NLM for full POSIX semantics, snapshots capabilities, and data at-rest encryption.

The Functions service helps you build and deploy applications and functions.

Fusion Analytics Warehouse empowers you with industry-leading, AI-powered, self-service analytics capabilities for data preparation, visualization, enterprise reporting, augmented analysis, and natural language processing.

You can control access to Oracle Cloud Infrastructure using IAM Service. Create and manage compartments, users, groups, and the policies that define permissions on resources.

Oracle Integration is a fully managed, preconfigured environment where you can integrate your applications, automate processes, gain insight into your business processes, create visual applications, and support B2B integrations. Use integrations to design, monitor, and manage connections between your applications, selecting from our portfolio of over 60 adapters to connect with Oracle and third-party applications.
Load Balancing allows you to create a highly available load balancer within your virtual cloud network (VCN) so that you can distribute internet traffic to your compute instances within the VCN.

Logging Analytics is a unified, integrated cloud solution that enables users to monitor, aggregate, index, analyze, search, explore, and correlate all log data from their applications and system infrastructure.

Management Agent is a service that provides low latency interactive communication and data collection between Oracle Cloud Infrastructure and any other targets.

Use Monitoring to query metrics and manage alarms. Metrics and alarms help monitor the health, capacity, and performance of your cloud resources.

MySQL Database is a fully managed database service that enables organizations to deploy cloud-native applications using the world’s most popular open source database. It is 100% compatible with On-Premises MySQL for a seamless transition to public or hybrid cloud. Leverage your existing Oracle investments and easily integrate MySQL Database Service with Oracle technologies.

Use Networking to create and manage the network components for your cloud resources. You can configure your virtual cloud network (VCN) with access rules and gateways to support routing of public and private internet traffic.

NoSQL Database Cloud is a high performance data store which is distributed, sharded for horizontal scalability, and highly available. It is optimized for applications requiring predictable low latency (such as fraud detection, gaming, and personalized user experience), very high throughput, or extreme ingestion rates (such as event processing, IoT, and sensor data).

Use Notifications to set up topics and subscriptions for broadcasting messages. Topics are used with alarms.

Operations Insights provides 360-degree insight into the resource utilization and capacity of Oracle Autonomous Databases. You can easily analyze CPU and storage resources, forecast capacity issues, and proactively identify SQL performance issues across a fleet of Autonomous Databases.

OS Management helps you keep operating platforms in your Compute instances secure and up to date with the latest patches and updates from the respective vendor.

Registry helps you store, share, and manage development artifacts like Docker images in an Oracle-managed registry.

Resource Manager helps you install, configure, and manage resources using the "infrastructure-as-code" model.

Search lets you find resources in your tenancy without requiring you to navigate through different services and compartments.

Security Zones let you be confident that your resources comply with Oracle security principles. If any resource operation violates a security zone policy, then the operation is denied.

Service Connector Hub is a cloud message bus platform that offers a single pane of glass for describing, executing, and monitoring interactions when moving data between Oracle Cloud Infrastructure services.

Storage Gateway is a cloud storage gateway that lets you connect your on-premises applications with Oracle Cloud Infrastructure. Applications that can write data to an NFS target can also write data to the Oracle Cloud Infrastructure Object Storage, without requiring application modification to uptake the REST APIs.

Use Streaming to ingest, consume, and process high-volume data streams in real-time.

The Support Management service allows you to create, view, and manage support tickets.

The Tagging service lets you use metadata tags to organize and manage the resources in your tenancy.

The Vault service helps you centrally manage the encryption keys that protect your data and the secret credentials that you use for access to resources.

Use Oracle Cloud VMware Solution to create and manage VMware enabled software-defined data centers (SDDCs) in Oracle Cloud Infrastructure. To get started with the VMware solution, see "Oracle Cloud VMware Solution," in the Oracle Cloud Infrastructure User Guide.

WAF helps you make your endpoints more secure by monitoring and filtering out potentially malicious traffic.
Welcome to Oracle Cloud Infrastructure

Accessing Oracle Cloud Infrastructure
You can create and manage resources in the following ways:

• **Oracle Cloud Infrastructure Console** The Console is an intuitive, graphical interface that lets you create and manage your instances, cloud networks, and storage volumes, as well as your users and permissions. See Using the Console on page 38.

• **Oracle Cloud Infrastructure APIs** The Oracle Cloud Infrastructure APIs are typical REST APIs that use HTTPS requests and responses. See "Using the API" in the Oracle Cloud Infrastructure User Guide.

• **SDKs** Several Software Development Kits are available for easy integration with the Oracle Cloud Infrastructure APIs, including SDKs for Java, Ruby, and Python. For more information, see "Developer Tools" in the Oracle Cloud Infrastructure User Guide.

• **Command Line Interface (CLI)** You can use a command line interface with some services. For more information, see "Developer Tools" in the Oracle Cloud Infrastructure User Guide.

• **Terraform** Oracle supports Terraform. Terraform is "infrastructure-as-code" software that allows you to define your infrastructure resources in files that you can persist, version, and share. For more information, see Getting Started with the Terraform Provider on page 108.

• **Ansible** Oracle supports the use of Ansible for cloud infrastructure provisioning, orchestration, and configuration management. Ansible allows you to automate configuring and provisioning your cloud infrastructure, deploying and updating software assets, and orchestrating your complex operational processes. For more information, see Getting Started with Oracle Cloud Infrastructure and Ansible.

• **Resource Manager** Resource Manager is an Oracle Cloud Infrastructure service that allows you to automate the process of provisioning your Oracle Cloud Infrastructure resources. Using Terraform, Resource Manager helps you install, configure, and manage resources through the "infrastructure-as-code" model. For more information, see Overview of Resource Manager.

For new capabilities, Oracle targets the release of relevant APIs, as well as CLI, SDKs, and Console updates, at the time of general availability (GA). We also target the release of an updated Terraform provider within 30 days of GA.

How Do I Get Started?

• Sign up for Oracle Cloud Infrastructure
• Understand Oracle Cloud Infrastructure concepts and terminology
• Follow guided tutorials to:
 • Launch your first instance (Linux or Windows)
 • Add users
 • Put data into object storage
 • Create a load balancer
• Get started with APIs, see "Using the API" in the Oracle Cloud Infrastructure User Guide
• FAQs

Key Concepts and Terminology
Understand the following concepts and terminology to help you get started with Oracle Cloud Infrastructure.

BARE METAL HOST
Oracle Cloud Infrastructure provides you control of the physical host (“bare metal”) machine. Bare metal compute instances run directly on bare metal servers without a hypervisor. When you provision a bare metal compute instance, you maintain sole control of the physical CPU, memory, and network interface card (NIC). You can configure and utilize the full capabilities of each physical machine as if it were hardware running in your own data center. You do not share the physical machine with any other tenants.

REGIONS AND availability domains
Oracle Cloud Infrastructure is physically hosted in regions and availability domains. A region is a localized geographic area, and an availability domain is one or more data centers located within a region. A region
Welcome to Oracle Cloud Infrastructure

is composed of one or more availability domains. Oracle Cloud Infrastructure resources are either region-specific, such as a virtual cloud network, or availability domain-specific, such as a compute instance. Availability domains are isolated from each other, fault tolerant, and very unlikely to fail simultaneously or be impacted by the failure of another availability domain. When you configure your cloud services, use multiple availability domains to ensure high availability and to protect against resource failure. Be aware that some resources must be created within the same availability domain, such as an instance and the storage volume attached to it.

For more details see “Regions and Availability domains” in the Oracle Cloud Infrastructure User Guide.

REALM

A realm is a logical collection of regions. Realms are isolated from each other and do not share any data. Your tenancy exists in a single realm and has access to the regions that belong to that realm. Oracle Cloud Infrastructure currently offers a realm for commercial regions and two realms for government cloud regions: FedRAMP authorized and IL5 authorized.

CONSOLE

The simple and intuitive web-based user interface you can use to access and manage Oracle Cloud Infrastructure.

tenancy

When you sign up for Oracle Cloud Infrastructure, Oracle creates a tenancy for your company, which is a secure and isolated partition within Oracle Cloud Infrastructure where you can create, organize, and administer your cloud resources.

compartments

Compartments allow you to organize and control access to your cloud resources. A compartment is a collection of related resources (such as instances, virtual cloud networks, block volumes) that can be accessed only by certain groups that have been given permission by an administrator. A compartment should be thought of as a logical group and not a physical container. When you begin working with resources in the Console, the compartment acts as a filter for what you are viewing.

When you sign up for Oracle Cloud Infrastructure, Oracle creates your tenancy, which is the root compartment that holds all your cloud resources. You then create additional compartments within the tenancy (root compartment) and corresponding policies to control access to the resources in each compartment. When you create a cloud resource such as an instance, block volume, or cloud network, you must specify to which compartment you want the resource to belong.

Ultimately, the goal is to ensure that each person has access to only the resources they need.

Security Zones

A security zone is associated with a compartment. When you create and update cloud resources in a security zone, Oracle Cloud Infrastructure validates these operations against security zone policies. If any policy is violated, then the operation is denied. Security zones let you be confident that your resources comply with Oracle security principles.

VIRTUAL CLOUD NETWORK (VCN)

A virtual cloud network is a virtual version of a traditional network—including subnets, route tables, and gateways—on which your instances run. A cloud network resides within a single region but includes all the region's availability domains. Each subnet you define in the cloud network can either be in a single availability domain or span all the availability domains in the region (recommended). You need to set up at least one cloud network before you can launch instances. You can configure the cloud network with an optional internet gateway to handle public traffic, and an optional IPSec VPN connection or FastConnect to securely extend your on-premises network.
INSTANCE

An instance is a compute host running in the cloud. An Oracle Cloud Infrastructure compute instance allows you to utilize hosted physical hardware, as opposed to the traditional software-based virtual machines, ensuring a high level of security and performance.

IMAGE

The image is a template of a virtual hard drive that defines the operating system and other software for an instance, for example, Oracle Linux. When you launch an instance, you can define its characteristics by choosing its image. Oracle provides a set of images you can use. You can also save an image from an instance that you have already configured to use as a template to launch more instances with the same software and customizations.

SHAPE

In Compute, the shape specifies the number of CPUs and amount of memory allocated to the instance. Oracle Cloud Infrastructure offers shapes to fit various computing requirements. See “Compute Shapes” in the Oracle Cloud Infrastructure User Guide.

In Load Balancing, the shape determines the load balancer's total pre-provisioned maximum capacity (bandwidth) for ingress plus egress traffic. Available shapes include 100 Mbps, 400 Mbps, and 8000 Mbps.

KEY PAIR

A key pair is an authentication mechanism used by Oracle Cloud Infrastructure. A key pair consists of a private key file and a public key file. You upload your public key to Oracle Cloud Infrastructure. You keep the private key securely on your computer. The private key is private to you, like a password.

Key pairs can be generated according to different specifications. Oracle Cloud Infrastructure uses two types of key pairs for specific purposes:

- **Instance SSH Key pair**: This key pair is used to establish secure shell (SSH) connection to an instance. When you provision an instance, you provide the public key, which is saved to the instance’s authorized key file. To log on to the instance, you provide your private key, which is verified with the public key.
- **API signing key pair**: This key pair is in PEM format and is used to authenticate you when submitting API requests. Only users who will be accessing Oracle Cloud Infrastructure via the API need this key pair.

For details about the syntax of an OCID, see “Security Credentials” in the Oracle Cloud Infrastructure User Guide.

BLOCK VOLUME

A block volume is a virtual disk that provides persistent block storage space for Oracle Cloud Infrastructure instances. Use a block volume just as you would a physical hard drive on your computer, for example, to store data and applications. You can detach a volume from one instance and attach it to another instance without loss of data.

OBJECT STORAGE

Object Storage is a storage architecture that allow you to store and manage data as objects. Data files can be of any type and up to 50 GB in size. Once you upload data to Object Storage it can be accessed from anywhere. Use Object Storage when you want to store a very large amount of data that does not change very frequently. Some typical use cases for Object Storage include data backup, file sharing, and storing unstructured data like logs and sensor-generated data.

BUCKET

A bucket is a logical container used by Object Storage for storing your data and files. A bucket can contain an unlimited number of objects.

ORACLE CLOUD IDENTIFIER (OCID)

Every Oracle Cloud Infrastructure resource has an Oracle-assigned unique ID called an Oracle Cloud Identifier (OCID). This ID is included as part of the resource's information in both the Console and API.
For details about the syntax of an OCID, see “Resource Identifiers” in the Oracle Cloud Infrastructure User Guide.

Oracle Cloud Infrastructure Free Tier

Oracle Cloud Infrastructure's Free Tier includes a free time-limited promotional trial that allows you to explore a wide range of Oracle Cloud Infrastructure products, and a set of Always Free offers that never expire.

Free Trial

The Free Trial provides you with $300 of cloud credits that are valid for up to 30 days. You may spend these credits on any eligible Oracle Cloud Infrastructure service.

Getting Started

Start for Free

For more information, and to see a complete list of services available to you during the trial, visit the Free Trial website.

Note:

During sign up, choose your home region carefully. You can provision Always Free Autonomous Databases only in your home region.

For security purposes, most users will need a mobile phone number and a credit card to create an account. Your credit card will not be charged unless you upgrade your account.

When Your Trial Period Ends

After your trial ends, your account remains active. There is no interruption to the availability of the Always Free Resources you have provisioned. You can terminate and re-provision Always Free resources as needed.

Paid resources that were provisioned with your credits during your free trial are reclaimed by Oracle unless you upgrade your account.

Pay as You Go accounts are available with no commitment, or contact an Oracle sales representative in your location to learn about monthly and annual flex accounts that offers discounted pricing. For more information, see Oracle Cloud Infrastructure Pricing.

Always Free Resources

All Oracle Cloud Infrastructure accounts (whether free or paid) have a set of resources that are free of charge for the life of the account. These resources display the Always Free label in the Console.

Using the Always Free resources, you can provision a virtual machine (VM) instance, an Oracle Autonomous Database, and the networking, load balancing, and storage resources needed to support the applications that you want build. With these resources, you can do things like run small-scale applications or perform proof-of-concept testing.

The following list summarizes the Oracle Cloud Always Free-eligible resources that you can provision in your tenancy:

- Compute (up to two instances)
- Autonomous Database (up to two database instances)
- Load Balancing (one load balancer)
- Block Volume (up to 100 GB total storage)
- Object Storage (up to 20 GiB)
- Vault (up to 20 keys and up to 150 secrets)

For detailed information about the Always Free resources, see Details of the Always Free Resources.
Welcome to Oracle Cloud Infrastructure

You can find your tenancy’s limits for Always Free resources in the Console. To check these limits: Open the navigation menu. Under Governance and Administration, go to Limits, Quotas and Usage.

Quickly Launch Your Always Free Resources Using Resource Manager

Oracle offers you the ability to automatically create a full set of Always Free resources in a few minutes using the Resource Manager service’s sample solutions feature. Solutions are pre-built Terraform configurations that help you easily create sets of resources used in common scenarios using a single, simple workflow. When you provision your Always Free resources using the provided sample solution, your resources are created with the settings and configuration you need to start creating applications in the cloud. You don't need to have experience with Terraform to use the sample solution. See To provision your Always Free using Terraform and Resource Manager for step-by-step instructions.

To provision your Always Free using Terraform and Resource Manager

Tip:

Note that Terraform refers to the set of resources being provisioned as a "stack". For a general introduction to Terraform and the "infrastructure-as-code" model, see Terraform: Write, Plan, and Create Infrastructure as Code.

1. Log into your Oracle Cloud Infrastructure account.
2. Open the navigation menu. Under Solutions and Platform, go to Resource Manager and click Stacks.
3. Click the Create Stack button to open the Create Stack dialog.
4. In the Create Stack dialog, click Sample Solution.
5. Click Select Solution to browse available solutions.
6. Select the checkbox for Sample E-Commerce Application.
7. Click Select Solution.
8. Optionally, provide a name for the new stack. If you don't provide a name, a default name is provided on the server.
9. Optionally, provide a description for the stack.
10. Optionally, select a different compartment from your current compartment in which to create the stack. To do so, select a compartment from the Create In Compartment drop-down.
11. Click Next to proceed to the Configure Variables panel.
12. The variables displayed in the Configure Variables panel are auto-populated from the Terraform file that you uploaded. You don't need to change these variables if you are provisioning your Always Free resources using the Terraform file provided by Oracle.
13. Click Next to proceed to the Review panel.
14. Verify your stack configuration, then click Create to create your stack.

Your set of Always Free resources should take no more than a few minutes to provision.

Upgrading to a Paid Account

You can upgrade to a paid account at any time through the Oracle Cloud Infrastructure Console. To do so, click the Upgrade link in the banner at the top of the Console web page. If you don't see an Upgrade link on the page you are viewing, you can click the Oracle Cloud logo at the top of the Console and then look for the Upgrade link in the sidebar on the right side of the Console home page. You will continue to have access to all of your cloud resources after upgrading your account.

Additional Information

See Frequently Asked Questions: Oracle Cloud Infrastructure Free Tier for answers to your questions about Free Tier accounts and resources.
Chapter 2

Request and Manage Free Oracle Cloud Promotions

You can sign up for a 30-day Oracle Cloud promotion and receive free credits. This promotion applies to eligible Oracle Cloud Infrastructure services.

Estimate Your Monthly Cost on page 18
Sign Up for the Free Oracle Cloud Promotion on page 20
Monitor the Credit Balance for Your Free Oracle Cloud Promotion on page 21
What Happens When the Promotion Expires on page 21
Upgrade Your Free Oracle Cloud Promotion on page 22

Estimate Your Monthly Cost

Oracle provides you with a cost estimator to help you figure out your monthly usage and costs for Oracle’s Infrastructure and Platform Cloud (Oracle IaaS/PaaS) services before you commit to an amount.

The cost estimate is automatically calculated based on your choice of the Oracle Cloud service category, its service configurations, and the usage of each resource in the configuration.

You can start using Oracle Cloud with no up-front cost. Oracle will bill you for the services and resources you use. For the purpose of planning, use the results from the Cost Estimator to estimate how much you are likely to be charged for usage each month.

To use the Cost Estimator:

1. Go to the Cost Estimator page on the Oracle Cloud website.
2. Select a category of cloud services, such as Infrastructure or Data Management, from the list on the left side of the page.

 The cost estimator displays a set of packages, which represent the services and resources that are typically required to support the selected service category. To see all the packages of the selected service category, scroll to the right.
3. Select one of the packages, as a starting point for your estimate. The estimator begins calculating the cost for the selected service and package.
4. In the Configuration Options section, expand each service, use the sliders, or select from the drop-down lists to adjust the values to match your project’s or organization’s needs.

 As soon as you adjust the amount of resources, the cost estimate changes.

 If you have existing software licences for services such as Oracle Database or Oracle Middleware, you can use them to estimate your cost for cloud services. Simply select the BYOL (Bring Your Own License) option from the service packages or under the Configuration Options section. For example, if you have an existing license for Autonomous Data Warehouse, then select the Autonomous Data Warehouse Cloud - BYOL package from the service packages set. If you’ve an Oracle Database Enterprise Edition license, then select the Enterprise Edition...
Extreme Performance BYOL option from the Edition list under Configuration Options. The cost immediately reflects the BYOL pricing, which is typically lower than the normal cloud service costs.

You can experiment with different configuration options until you balance the cost with your organization’s needs.

5. Review your estimates, and then click Start for Free to sign up for the Oracle Cloud Free Tier and get free credits. You can upgrade your free promotion to a paid account at any time during the promotion period.

Example: Estimating Your Monthly Cost for Oracle Database Cloud Service

In this example, see how you can estimate your monthly cost for Oracle Database Cloud Service based on your requirements.

To estimate your costs:

1. In the Cost Estimator page, select the Data Management category from the list on the left side of the screen.
2. From the list of configurations displayed, select Oracle Database Cloud Service and click Add.
 The cost estimator displays a set of packages, which represent the services and resources that are typically required to support the selected service category. To see all the packages of the selected service category, scroll to the right.
3. In the Configuration Options section of the page, expand Database.
4. Expand each of the resources under Database, such as Number of Instances, Average Days Usage per Month, or Average Hours Usage per Day. You’ll see some default values as you expand each item.
5. Increase the number of instances to 2: One for development and one for testing.
6. Use the slider to adjust values for Average Days Usage per Month or Average Hours Usage per Day, as needed. By default, they are set to 31 days (in a month) and 24 hours (per day) of usage. If you intend to use the Database service for a lesser period, then adjust the values accordingly.
7. Select Enterprise Edition High Performance - General Purpose from the Edition drop-down menu to see how this affects the monthly estimate.
8. You can also remove certain sections by clicking the trash icon next to them. For example, if you don’t need Database Backup service, you can remove it by clicking the trash icon.
9. When you have estimated all your requirements, select the payment plan, and click Buy Now.

You can also add other configurations in the Data Management category such as Oracle Database Exadata Cloud Service or Oracle Big Data Cloud Service to estimate your total cost. Or, you can add other service categories, such as Infrastructure or Integration and their configurations, as needed, to get your total usage cost estimate.

Save and Share Your Cost Estimator Results

When you are satisfied with your monthly usage estimates, you can save them either by downloading them as a PDF file or exporting them to an .oce file. The .oce file is only used to export and import your saved estimates in the Cost Estimator. This is useful when you want to share and review the quotes with your management, finance, or other departments to get their approval.

Save Your Cost Estimates

To save your cost estimate:

• In the Cost Estimator page, select from the following options:
 • Load/Save: Click this button to save your service configurations in your browser. Provide a name for your configuration and click Save. Note that this action is browser specific. You can’t use a configuration that you saved on Google Chrome in Firefox, or vice versa.
 • Save as PDF: Click this button to save the estimates as a PDF file. This is useful for presenting the estimates to others. The PDF is read-only.
 • Export: Click this button to export the estimates to an .oce file. This is useful if you need to share the estimates with reviewers or might need to make changes to them later. The reviewers can then import the .oce file to their own Cost Estimator pages and make changes as needed.
Import or Load Your Saved Estimates

If you want to make changes to your saved estimates, or if you’re reviewing them, you can import them to the Cost Estimator. You can also load previously saved service configurations on your browser to continue with your estimate.

To import or load your saved cost estimate, use any of the following options:

• **Load/Save:** Click this button to load your saved service configurations. Note that this action is browser specific.
 1. Click Select Saved Configuration.
 2. Select a saved configuration and then click Load.

• **Import:** Click this button to import any previously exported estimates. Ensure that you have exported the estimates to an .oce file.
 1. Browse for the .oce file and click Open.

The saved estimates appear in the Cost Estimator page. You can then make changes as required.

Sign Up for the Free Oracle Cloud Promotion

Signing up for Oracle Cloud Free Tier is easy.

2. Provide information for your Oracle Cloud account.
 • Select your country. For some countries, such as Russia, you must manually accept the Terms of Use by selecting the check boxes when prompted.
 • Enter your name and optionally enter the name of your company.
 • Provide a valid email address.

 You'll use this email ID later to sign in to your Oracle Cloud account. Instructions about signing in to your new cloud account are sent to this address.

 Your email ID is also used to check if you are eligible for any special offers. If you are, then you'll be prompted to select a special offer from a list of applicable offers.

 Oracle permits one cloud account to be created per email address. If your email address is already associated with a cloud account, then you can click the link to get all your accounts associated with your email address.

 • Enter a password based on the password policy specified on the web page. You will use this password later to sign in to your Oracle Cloud account.

 Password must contain a minimum of 8 characters, 1 lowercase, 1 uppercase, 1 numeric, and 1 special character. Password can't exceed 40-characters, contain the users first name, last name, email address, spaces, or ~ < > \ characters.

 • Re-enter the password to confirm it.
 • Create a cloud account name, which is used to identify your cloud account.
 • Select a **Home Region**, where your services will be hosted.

 Note:

 Your home region is the geographic location where your account and identity resources will be created. You can't change this after signing up.

 If you are not sure which region to select as your home region, contact your sales representative before you create your account.

 • Click Continue.
3. Enter your address, and then click **Continue**.

 Provide additional information, such as a PO box number, if you’re asked for it. For Brazil, enter your CPF number for tax purposes in the format xxxxxxxxx-xx. For example, 655156112-18.

 If you have selected a special offer, then you’ll be prompted to enter a phone number. You don’t have to provide verification code for certain offers, so in these cases skip to step 8.

4. Enter a valid mobile number, along with country code, and then click **Text me a code**. A verification code will be sent as a text message to your mobile phone. VOIP or internet-only mobile numbers are not accepted as we may need to speak to you if there are questions about your account.

5. Enter the verification code that you received on your phone as a text message, and then click **Verify my code**. If you already have a verification code, then follow the on-screen instructions to verify your phone number.

 You can also click **Request another code** if you don't receive a verification code soon or if your verification code expires.

6. Click **Add payment verification method**, and then click **Credit Card**.

7. Enter your credit card information, and then click **Finish**. You may see a small, temporary charge on your payment method. This is a verification hold that will be removed automatically. Note that your credit card won't be charged unless you elect to upgrade your cloud account.

8. Accept the terms and conditions, and then click **Start my free trial** to submit your request for a new Oracle Cloud account.

 After the services are provisioned in your tenancy, you'll be redirected to the Oracle Cloud Infrastructure Console. Use the Oracle Cloud Infrastructure Console to create instances of your services.

 You'll also receive a welcome (Get Started) email with more information about your account.

 For some countries, you may not be able to request a free promotion from the Oracle Cloud website. In these cases, contact Oracle Sales to request a free promotion.

Monitor the Credit Balance for Your Free Oracle Cloud Promotion

After you get free credits, you can monitor and manage your service usage and your credit balance.

In the Console, you can monitor your usage costs from the **Account Management** page. See **Checking Your Balance and Usage** on page 58 for more information.

Oracle sends you a notice when you get close to your credit limit.

What Happens When the Promotion Expires

If you don’t upgrade your free credit promotion to a paid subscription, then it’s important to understand what happens to your cloud account.

All Oracle Cloud Infrastructure accounts (whether free or paid) have a set of resources that are available free of charge for the life of the account. These resources are called Always Free resources. If you have subscribed to a free credit promotion, your account continues to be available to you after the trial period ends (or after you use all of your credits). You can continue to use the Always Free resources in your account for as long as your account remains active. Free accounts remain active and available to you as long as the account has been used within the past 60 days. If you have a paid account, you will not be billed for any Always Free resources you are using. See **Oracle Cloud Infrastructure Free Tier** on page 16 for more information.

Your Free Credit Promotion expires:

- Thirty (30) days from the day you signed up.
- OR
- When you use up the free credits available in your promotion offer.
In both cases, Oracle Cloud sends you warning messages that you are nearing the end of your promotion period or getting close to your free credit limit. Another email will let you know when the promotion actually expires. You will have a grace period of 30 days. You can continue to use paid resources during the grace period. However, you can't create new paid resources during the grace period unless you upgrade your account. If you don't upgrade your account during this period, then your paid resources will be reclaimed. Your Always Free resources will continue to be available.

Upgrade Your Free Oracle Cloud Promotion

You can choose to upgrade your free promotion to a paid account at any time during the promotion period or within 30 days of the promotion expiration.

If you are using the Oracle Cloud Infrastructure Console, then you can upgrade your promotion to a paid account from the **Account Management** page. For more information, see **Changing Your Payment Method** on page 59.
Chapter 3

Buy an Oracle Cloud Subscription

Use the Oracle Cloud website to estimate your cloud usage and costs for Oracle Cloud Infrastructure services and to sign up for an Oracle Cloud account. You can also contact an Oracle Sales representative to order Oracle Cloud services on your behalf.

To purchase a subscription to Oracle Cloud Applications (SaaS), see Order Oracle Cloud Applications.

About Bring Your Own License Subscriptions

If you already have Oracle software licenses for services such as Oracle Database, Oracle Middleware, or Oracle Analytics, you can reuse them when subscribing to Oracle Platform Cloud Services (Oracle PaaS). This is called Bring Your Own License (BYOL).

With BYOL, you can leverage existing software licenses for Oracle PaaS at a lower cost. For example, if you have purchased a perpetual license for Oracle Database Standard Edition earlier, then you can use the same when you buy Database Standard Package with BYOL pricing. This enables you to get a discounted price for your services. Oracle BYOL to PaaS includes Compute and Compute support along with automation.

You continue to get the same license support (that you had for your existing licenses) and contract when you buy Oracle PaaS with BYOL pricing. This flexible licensing allows you to move between your on-premises and cloud services with ease.

How do You Use Your BYOL for Oracle PaaS?

When you have an existing Oracle software license and you want to use it on Oracle Cloud, you can do so in the following ways:

• Select specific Oracle BYOL options in the Cost Estimator to get your BYOL pricing.
• Apply your BYOL pricing to individual cloud service instances when creating a new instance of your PaaS service. BYOL is the default licensing option during instance creation for all services that support it. For example, when creating a new instance of Oracle Database Cloud Service using the QuickStarts wizard, BYOL option is automatically applied.

For a list of cloud services that support BYOL, search for BYOL in the Universal Credits Service Descriptions Document.

For more information, see BYOL Overview video and Frequently Asked Questions.

About Universal Credits

Oracle Cloud provides a flexible buying and usage model for Oracle Cloud Services, called Universal Credits.

When you sign up for an Oracle Cloud Account, you have unlimited access to all eligible IaaS and PaaS services. You can sign up for a Pay-As-You-Go subscription to pay in arrears based on your actual usage at the end of your monthly billing cycle.
After you sign up, you can start using any of the IaaS or PaaS services at any time. Not all services are available in all the data regions. You can only use services in the data regions that your subscription is enabled in. However, you can always extend your subscription to other data regions to access services available there. See Extending Your Subscription to Another Data Region.

When new eligible services become available as part of the Universal Credits program, you’ll receive an email with the details of the newly added services if they are available in one of your enabled data regions.

For new services added to data regions where your subscription is not enabled, see the Service Availability Matrix.

Upgrade Your Free Oracle Cloud Promotion

You can choose to upgrade your free promotion to a paid account at any time during the promotion period or within 30 days of the promotion expiration.

If you are using the Oracle Cloud Infrastructure Console, then you can upgrade your promotion to a paid account from the Account Management page. For more information, see Changing Your Payment Method on page 59.

Activate Your Order from Your Welcome Email

If you ordered Oracle Infrastructure as a Service (Oracle IaaS) and Oracle Platform as a Service (Oracle PaaS) cloud services with Universal Credits through Oracle Sales, then you must activate your services before you start using them.

When an Oracle Sales representative orders Oracle Cloud services on your behalf, you’ll receive a welcome email and you’ll be designated as an activator of the services. To activate your services, you must provide your details and set up your account with Oracle. Review the instructions in the email to create an account and start using your services.

1. Open the email you received from Oracle Cloud.
2. Review the information about your service in the email.
3. Click Activate My Services.
4. Complete the form to sign up for your new Oracle Cloud account.

You will be asked to:

- Provide a new account name, which will be used to identify your Cloud account.
- Provide your email address. You must provide the same email address at which you received your welcome email. Instructions for signing in to your new Oracle Cloud account will be sent to this address. You’ll be prompted for the email ID only if you don’t already have an Oracle Cloud account.
- If prompted, select a Home Region. If you need more information, click the Regions link below the field.

Note:

Your home region contains your account information and identity resources. It is not changeable after your tenancy is provisioned. If you are unsure which region to select as your home region, contact your sales representative before you create your account.

- Provide Oracle Cloud account administrator details. The person you specify here will be a Cloud Account Administrator and a Service Administrator and can create other users in your account. This person will manage and monitor services in the specified Oracle Cloud account.
- After you enter all the required information, click Create Account to submit your request for an Oracle Cloud account.

After successful activation, you’ll receive another email with your sign in credentials. Use this information to sign in to your account and change your password after initial sign in.
Verify That Your Services Are Ready

When you sign up for a Free Oracle Promotion or a paid account, your Oracle Cloud account is created soon after sign up, but the service provisioning takes some time. You’ll receive a Welcome email soon after you sign up.

The email contains information required to access your account and sign in to Infrastructure Classic Console:

• Your user name and temporary password (sign-in credentials)
• The name of your Cloud Account

Sign in to Infrastructure Classic Console to see how many services are provisioned. A message at the top of the Infrastructure Classic Console indicates how many services are active.

1. Click **Get Started with Oracle Cloud** from your welcome email.
2. Change your password when prompted.
3. Scan the dashboard to check the current status of your service. When the services are provisioned, they might not immediately be displayed on the Infrastructure Classic Console. Services with instances are automatically displayed.
4. Click the gear icon next to Dashboard and set the services to **Show**. By default, all service tiles are hidden, unless a service has at least one instance. The **Customize Dashboard** dialog box appears.

When all the services in your order are provisioned, you’ll get a message on the Infrastructure Classic Console. You can then add users, view service details, monitor account usage, and access the service consoles.

Some services in your order may require additional sign-in credentials, which you can find in the Manage Account, **My Admin Accounts** page. For more information about these services, see **Access Traditional Cloud Account Services**.
You can sign up for the Oracle Startup Program and receive free credits. This promotion applies to eligible Oracle Infrastructure as a Service (Oracle IaaS) and Platform as a Service (Oracle PaaS) services.

After you consume your free credits, you’ll be charged for the services and resources you use. For information about monitoring the usage of your free credits, see Monitor the Credit Balance for Your Free Oracle Cloud Promotion on page 21.

Sign Up for the Oracle Startup Program

Signing up for the Oracle Startup Program is easy. You create an Oracle Cloud account, and then you get a welcome email with the details that you need to sign in.

1. Go to the Oracle for Startups website, and then click Join Oracle for Startups.
2. Fill out the Oracle for Startups form. You are asked to:

 Create Account:

 • Select your country. For some countries such as Russia, you must manually accept the Terms of Use by selecting the check boxes when prompted.
 • Provide a valid email address, and then click Next. Instructions for signing in to your new cloud account are sent to this address. You can sign up for only one Oracle Startup Program even if you have an existing Oracle Cloud account. If your email address is already associated with the Oracle Startup Program, then you'll be provided information to access your existing account.

 Enter Account Details:

 • Create a cloud account name, which is used to identify your cloud account.
 • Select a Home Region, where your services will be hosted. See Data Regions for Platform and Infrastructure Services for service availability in each region.

 Note:

 Your home region contains your account information and identity resources. It is not changeable after your tenancy is provisioned. If you
• Provide your name, company name, and address.
• Provide additional information, such as a PO box number, if you’re asked for it. For Brazil, enter your CNPJ number for tax purposes in the format xxxxxxxx/xxxx-xx. For example, 12345678/0001-18.
• Enter a valid mobile number, so that Oracle can text you a verification code, and then click Next: Verify Mobile Number. VOIP or internet-only mobile numbers are not accepted.
• Your address is validated and displayed with corrections, if any. Confirm your address if prompted.

Verify Your Mobile Number:
• Enter the SMS code you received on your phone and click Verify Code. If you already have a verification code, then follow the on-screen instructions to verify your phone number.
• You can also request another code if you don’t receive a verification code soon.

Payment Information:
• Click Add Credit Card Details. Enter your credit card information. During sign up, you may see an authorization of $100 USD (or local currency equivalent) on your payment card account. Authorizations do not represent charges nor money owed to Oracle. This is a temporary hold on available credit that will be removed automatically.
• Click Finish.

3. Accept the terms and conditions, and then click Complete Sign-Up to submit your request for a new Oracle Cloud account.

Your account is created. After the services in your tenancy are provisioned, you'll be redirected to the sign-in page. You'll also receive a welcome (Get Started) email with your sign-in credentials.
Chapter 5

Understanding the Sign-In Options

This topic describes sign in options available to you when you sign up for an Oracle Cloud account.

About the Sign In Options

When you sign up for Oracle Cloud, Oracle creates a user for you in two different identity systems, giving you two options to sign in to Oracle Cloud Infrastructure.
Understanding the Sign-In Options

When you want to use Oracle Cloud Infrastructure, you can choose which identity provider to sign in through:

Oracle Cloud Infrastructure IAM

Oracle Cloud Infrastructure includes its own identity service, called the Identity and Access Management service, or IAM, for short. When you sign up for an Oracle Cloud account, this service is included. A user is created for you in the IAM service with the username and password you selected at sign up. You are granted administrator privileges in Oracle Cloud Infrastructure so you can get started right away with all Oracle Cloud Infrastructure services.

Oracle Identity Cloud Service

Many other Oracle Cloud services, including Oracle Cloud Infrastructure, are integrated with Oracle Identity Cloud Service. When you sign up for an Oracle Cloud account, a second, separate user is created for you in Oracle Identity Cloud Service with the username and password you selected at sign up. You can use this single sign-on option to sign in to Oracle Cloud Infrastructure and then navigate to other Oracle Cloud services without reauthenticating. This user has administrator privileges for all the Oracle Cloud services included with your account.

Important:

The sign up process creates your user in two identity systems:

- **Oracle Cloud Infrastructure IAM Service**
 - User Name: `me@example.com`
 - Password: `<signup password>`

- **Oracle Identity Cloud Service**
 - User Name: `me@example.com`
 - Password: `<signup password>`
Understanding the Sign-In Options

Although the credentials are identical in both systems when your account is created, the users are in separate identity management systems, and you manage them separately. If you change your password in the Oracle Cloud Infrastructure IAM, your password in Oracle Identity Cloud Service is not changed, and conversely.

When to Use Each Sign-In Option

If you plan to use Oracle Cloud Infrastructure services exclusively, it makes sense for you to use your direct sign-in credentials to the IAM service.
Understanding the Sign-In Options

Oracle Cloud Infrastructure sign-on allows access to OCI services only

If you want to use other Oracle Cloud services that are managed through Oracle Identity Cloud Service, then sign in with your single sign-on credentials.
Oracle Identity Cloud Service sign-on allows access to Oracle Cloud Infrastructure AND other cloud services

More Information About Managing Users in Oracle Cloud Identity Providers

- Managing Users in the IAM Service
- Managing Oracle Identity Cloud Service Users and Groups in the Oracle Cloud Infrastructure Console
- Adding Users on page 62
Chapter 6

 Signing In to the Console

This topic describes how to sign in to the Oracle Cloud Infrastructure Console.

Supported Browsers

Oracle Cloud Infrastructure supports the following browsers and versions:

- Google Chrome 69 or later
- Safari 12.1 or later
- Firefox 62 or later

Signing In for the First Time

To sign in to Oracle Cloud at https://www.oracle.com/cloud/sign-in.html, you need:

- Your cloud account name
- User name and password

When your tenancy is provisioned, Oracle sends an email to the default administrator at your company with the sign-in credentials and URL. This administrator can then create a user for each person who needs access to Oracle Cloud Infrastructure. Check your email or contact your administrator for your credentials and account name.

1. Open a supported browser and go to https://www.oracle.com/cloud/sign-in.html.
2. Click Sign In.
3. Enter your Cloud Account Name and click Next.
4. Enter your user name and temporary password from your welcome email. You will be prompted to change your temporary password.

After you sign in, the Console Home page is displayed.

About the Console URL

Alternatively, you can sign in directly to Oracle Cloud Infrastructure using the Console URL. When you sign up to use Oracle Cloud Infrastructure, you receive a customized URL for your organization. For example,

https://console.us-ashburn-1.oraclecloud.com/?tenant=CompanyABC

If you instead use the base URL (for example: https://console.us-ashburn-1.oraclecloud.com), you are prompted to specify your tenant (or cloud account name) on the sign-in page, along with your user name and password.

Note:

When you're logged in to the Console for one of the commercial realm regions, the browser times out after 60 minutes of inactivity, and you need to sign in again to use the Console.
List of regional Console URLs

- https://console.ap-chuncheon-1.oraclecloud.com
- https://console.ap-hyderabad-1.oraclecloud.com
- https://console.ap-melbourne-1.oraclecloud.com
- https://console.ap-mumbai-1.oraclecloud.com
- https://console.ap-osaka-1.oraclecloud.com
- https://console.ap-seoul-1.oraclecloud.com
- https://console.ap-sydney-1.oraclecloud.com
- https://console.ap-tokyo-1.oraclecloud.com
- https://console.ca-montreal-1.oraclecloud.com
- https://console.ca-toronto-1.oraclecloud.com
- https://console.eu-amsterdam-1.oraclecloud.com
- https://console.eu-frankfurt-1.oraclecloud.com
- https://console.eu-zurich-1.oraclecloud.com
- https://console.me-dubai-1.oraclecloud.com
- https://console.me-jeddah-1.oraclecloud.com
- https://console.sa-saopaulo-1.oraclecloud.com
- https://console.uk-london-1.oraclecloud.com
- https://console.us-ashburn-1.oraclecloud.com
- https://console.us-phoenix-1.oraclecloud.com
- https://console.us-sanjose-1.oraclecloud.com

Next Steps

Get to know the Console. See Using the Console on page 38.

Follow guided tutorials to launch your first instance, add users, or put data into object storage.

Begin setting up your tenancy for other users. See Setting Up Your Tenancy on page 138.
Chapter 7

Using the Console

This topic describes basic information about the Oracle Cloud Infrastructure Console.

To access the Console, you must use a supported browser.

When you sign in to the Console you’ll see the home page. The home page gives you quick links to the documentation and to Oracle Support. Use the service tabs in the upper right to create, manage, and view your cloud resources.

Using the Console

This topic provides basic information about the Oracle Cloud Console. To access the Console, you must use a supported browser.

When you sign in to the Console, you see the home page.

• Use the navigation menu in the upper left to navigate to the service pages where you create, manage, and view your cloud resources.

• The Help menu () provides links to the documentation and to Oracle Support.

• Use the Quick Actions menu in the body of the home page to navigate directly to common tasks, like creating a VM instance, setting up a network with a wizard, and setting up a load balancer. Use these links to set up your environment.

• The Start Exploring on page 39 section provides links to tutorials, developer tools, and blogs that demonstrate how to use Oracle Cloud Infrastructure to build solutions.
Start Exploring

The Start Exploring section of the home page provides links to resources that demonstrate how to use Oracle Cloud Infrastructure to build solutions.

- In the **Get Started** tab, you find introductory materials that you can use to learn more about Oracle Cloud Infrastructure basics, such as information about virtual training classes, key concepts, and introductory demos.
- In the **Deploy Websites & Apps** tab, you find tutorials that leverage both basic and more advanced features available in Oracle Cloud Infrastructure to build solutions.
- In the **Explore Developer Tools** tab, you can explore the developer kits, tools, and plug-ins that Oracle Cloud Infrastructure provides to facilitate the development of apps and to simplify the management of infrastructure.
- In the **Manage Bills** tab, you can learn about the billing and payment tools that Oracle Cloud Infrastructure offers to make it easy to manage your service costs.

Understanding Compartments

After you select a service from the navigation menu, the menu on the left includes the compartments list.

Compartments help you organize resources to make it easier to control access to them. Your root compartment is created for you by Oracle when your tenancy is provisioned. An administrator can create more compartments in the root compartment and then add the access rules to control which users can see and take action in them. To manage compartments, see Managing Compartments.

The list of compartments is filtered to show you only the compartments that you have permission to access. Compartments can be nested, and you might have access to a compartment but not its parent. The names of parent compartments that you don't have permission to access are dimmed, but you can traverse the hierarchy down to the compartment that you do have access to.

After you select a compartment, the Console displays only the resources that you have permission to view in the compartment for the region that you are in. The compartment selection filters the view of your resources. To see resources in another compartment, you must switch to that compartment. To see resources in another region, you must switch to that region, or use the compartment explorer.

For more details about compartments, see Setting Up Your Tenancy on page 138 and Managing Compartments.
Navigating to Oracle Cloud Infrastructure Services

Open the navigation menu in the upper left to work with related services and resources. For example, open the navigation menu and click Compute to work with the Compute service and compute instances.

To familiarize yourself with the Compute, Networking, and Block Volume services by following a guided workflow, see Tutorial - Launching Your First Linux Instance on page 66.

To learn more about a specific service, see the appropriate topic in the Oracle Cloud Infrastructure User Guide.

- Analytics Cloud empowers business analysts and consumers with modern, AI-powered, self-service analytics capabilities for data preparation, visualization, enterprise reporting, augmented analysis, and natural language processing. To work with this service: Open the navigation menu. Under Solutions and Platform, go to Analytics and click Analytics Cloud.
- Application Migration simplifies the migration of applications from Oracle Cloud Infrastructure Classic to Oracle Cloud Infrastructure. After you meet the prerequisites, you can navigate to this service as follows: Open the navigation menu. Under Solutions and Platform, click Application Migration.
- Archive Storage helps you store data that is accessed infrequently and requires long retention periods. To work with this service: Open the navigation menu. Under Core Infrastructure, click Object Storage. See "Overview of Archive Storage" in the Oracle Cloud Infrastructure User Guide.
- The Audit service helps you track activity in your environment. To work with this service: Open the navigation menu. Under Governance and Administration, go to Governance and click Audit. See "Overview of Audit" in the Oracle Cloud Infrastructure User Guide.
- Big Data provides enterprise-grade Hadoop as a service, with end-to-end security, high performance, and ease of management and upgradeability. To work with this service: Open the navigation menu. Under Data and AI, click Big Data. See "Big Data" in the Oracle Cloud Infrastructure User Guide.
- Block Volume helps you dynamically provision and manage block storage volumes. To work with this service: Open the navigation menu. Under Core Infrastructure, go to Block Storage and click Block Volumes. See "Overview of Block Volume" in the Oracle Cloud Infrastructure User Guide.
- Blockchain Platform Cloud enables creation of managed, permissioned-blockchain networks for secure, real-time data sharing and trusted transactions among business partners. To work with this service: Open the navigation menu. Under Solutions and Platform, click Blockchain Platform. See "Getting Started with Oracle Blockchain Platform on Oracle Cloud Infrastructure" in the Oracle Cloud Infrastructure User Guide.
- Cloud Guard is a cloud-native service that helps customers monitor, identify, achieve, and maintain a strong security posture on Oracle Cloud. Use the service to examine your Oracle Cloud Infrastructure resources for security weakness related to configuration, and your Oracle Cloud Infrastructure operators and users for risky activities. Upon detection, Cloud Guard can suggest, assist, or take corrective actions, based on your configuration. To work with this service: Open the navigation menu. Under Security, click Cloud Guard. See the online documentation: Cloud Guard.
- Cloud Shell is a free-to-use browser-based terminal accessible from the Oracle Cloud Console that provides access to a Linux shell with pre-authenticated Oracle Cloud Infrastructure CLI and other useful developer tools. You can use the shell to interact with Oracle Cloud Infrastructure resources, follow labs and tutorials, and quickly run Oracle Cloud Infrastructure CLI commands.
- The Compute service helps you provision and manage compute hosts, known as instances, to meet your compute and application requirements. To work with this service: Open the navigation menu. Under Core Infrastructure, go to Compute and click Instances. See "Overview of the Compute Service" in the Oracle Cloud Infrastructure User Guide.
- Container Engine for Kubernetes helps you define and create Kubernetes clusters to enable the deployment, scaling, and management of containerized applications. To work with this service: Open the navigation menu. Under Solutions and Platform, go to Developer Services and click Kubernetes Clusters. See "Overview of Container Engine for Kubernetes" in the Oracle Cloud Infrastructure User Guide.
- Content and Experience is a cloud-based content hub to drive omni-channel content management and accelerate experience delivery. It offers powerful collaboration and workflow management capabilities to streamline the creation and delivery of content and improve customer and employee engagement. To work with this service, open the navigation menu. Under the Solutions and Platform group, go to Application Integration and click Content and Experience.
• Data Catalog is a collaborative metadata management solution that lets you be more insightful about the data you have in Oracle Cloud and beyond. With Data Catalog, data consumers can easily find, understand, govern, and track Oracle Cloud data assets. To work with this service: Open the navigation menu. Under Data and AI, click Data Catalog. See "Data Catalog" in the Oracle Cloud Infrastructure User Guide.

• Data Flow is a fully managed service with a rich user interface to allow developers and data scientists to create, edit, and run Apache Spark applications at any scale without the need for clusters, an operations team, or highly specialized Spark knowledge. As a fully managed service, there is no infrastructure to deploy or manage. It is entirely driven by REST APIs, giving easy integration with applications or workflows. To work with this service, open the navigation menu. Under Data and AI, go to Data Flow and click Applications. See "Data Flow" in the Oracle Cloud Infrastructure User Guide.

• Data Integration is a fully managed service that helps data engineers and ETL developers with common extract, load, and transform (ETL) tasks such as ingesting data from a variety of data assets, cleansing, transforming, and reshaping that data, and then efficiently loading it to target data assets. To work with this service, open the navigation menu. Under Data and AI, click Data Integration. See "Data Integration" in the Oracle Cloud Infrastructure User Guide.

• Data Safe is a fully-integrated Cloud service focused on the security of your data. It provides a complete and integrated set of features for protecting sensitive and regulated data in Oracle Cloud databases. Features include Security Assessment, User Assessment, Data Discovery, Data Masking, and Activity Auditing. To work with this service, Open the navigation menu. Under Database Related Services, click Data Safe.

• Data Science is a platform for data scientists to build, train, and manage machine learning models on Oracle Cloud Infrastructure, using Python and open source machine learning libraries. Teams of data scientists can organize their work and access data and computing resources in this collaborative environment. To work with this service, open the navigation menu. Under Data and AI, go to Data Science and click Projects. See "Data Science" in the Oracle Cloud Infrastructure User Guide.

• Data Transfer helps you easily and securely migrate your data in an offline manner to Oracle Cloud Infrastructure. To work with this service: Open the navigation menu. Under Core Infrastructure, go to Object Storage and click Data Transfer - Imports. See "Overview of Data Transfer" in the Oracle Cloud Infrastructure User Guide.

• The Database service helps you provision and manage Oracle databases. To work with this service: Open the navigation menu. Under Oracle Database, click Bare Metal, VM, and Exadata. See "Overview of the Database Service" in the Oracle Cloud Infrastructure User Guide.

• Digital Assistant is a platform that allows you to create and deploy digital assistants, which are AI-driven interfaces that help users accomplish a variety of tasks in natural language conversations. To work with this service: Open the navigation menu. Under Data and AI, click Digital Assistant.

• The DNS service helps you create and manage your DNS zones. To work with this service: Open the navigation menu. Under Core Infrastructure, go to Networking and click DNS Zone Management. See "Overview of the DNS Service" in the Oracle Cloud Infrastructure User Guide.

• The Email Delivery service helps you send large volume email and ensure that your message reaches your recipients' inboxes. To work with this service: Open the navigation menu. Under Solutions and Platform, go to Email Delivery. See "Overview of the Email Delivery Service" in the Oracle Cloud Infrastructure User Guide.

• The Events service helps you create automation in your tenancy. To work with this service: Open the navigation menu. Under the Solutions and Platform group, go to Application Integration and click Events Service. See "Overview of Events" in the Oracle Cloud Infrastructure User Guide.

• The File Storage service helps you manage shared file systems, mount targets, and snapshots. To work with this service: Open the navigation menu. Under Core Infrastructure, click File Storage. See "Overview of File Storage" in the Oracle Cloud Infrastructure User Guide.

• The Functions service helps you build and deploy applications and functions. To work with this service: Open the navigation menu. Under Solutions and Platform, go to Developer Services and click Functions. See "Overview of Functions" in the Oracle Cloud Infrastructure User Guide.

• Fusion Analytics Warehouse empowers you with industry-leading, AI-powered, self-service analytics capabilities for data preparation, visualization, enterprise reporting, augmented analysis, and natural language processing. After you meet the prerequisites, you can navigate to this service as follows: Open the navigation menu. Under Solutions and Platform, go to Analytics and click Fusion Analytics Warehouse. See Administering Oracle Fusion Analytics Warehouse.
• The Health Checks service helps you monitor the health of your endpoints. To work with this service: Open the navigation menu. Under Solutions and Platform, go to Monitoring and click Health Checks. See "Overview of the Health Checks Service" in the Oracle Cloud Infrastructure User Guide.

• The IAM service helps you set up administrators, users, and groups and specify their permissions. To work with this service: Open the navigation menu. Under Governance and Administration, click Identity. See "Overview of IAM" in the Oracle Cloud Infrastructure User Guide.

• Integration is a fully managed, preconfigured environment where you can integrate your applications, automate processes, gain insight into your business processes, create visual applications, and support B2B integrations.

• Load Balancing helps you create a regional load balancer within your VCN. To work with this service: Open the navigation menu. Under the Core Infrastructure group, go to Networking and click Load Balancers. See "Overview of Load Balancing" in the Oracle Cloud Infrastructure User Guide.

• Logging Analytics is a unified, integrated cloud solution that enables users to monitor, aggregate, index, analyze, search, explore, and correlate all log data from their applications and system infrastructure. To work with this service: Open the navigation menu. Under Monitoring and Diagnostics, click Logging Analytics. See the online documentation: Logging Analytics.

• Management Agent is a service that provides low latency interactive communication and data collection between Oracle Cloud Infrastructure and any other targets. To work with this service: Open the navigation menu. Under Monitoring and Diagnostics, click Management Agent. See the online documentation: Management Agent.

• Monitoring helps you monitor the health, capacity, and performance of your cloud resources by querying metrics and managing alarms. To work with this service: Open the navigation menu. Under Solutions and Platform, go to Monitoring. See "Overview of Monitoring" in the Oracle Cloud Infrastructure User Guide.

• MySQL Database helps you provision and manage MySQL DB systems. To work with this service: Open the navigation menu. Under MySQL, click DB Systems. See "MySQL" in the Oracle Cloud Infrastructure User Guide.

• Networking helps you set up virtual versions of traditional network components. To work with this service: Open the navigation menu. Under Core Infrastructure, go to Networking and click Virtual Cloud Networks. See "Overview of Networking" in the Oracle Cloud Infrastructure User Guide.

• NoSQL Database Cloud is a high performance data store which is distributed, sharded for horizontal scalability, and highly available. It is optimized for applications requiring predictable low latency (such as fraud detection, gaming, and personalized user experience), very high throughput, or extreme ingestion rates (such as event processing, IoT, and sensor data). To work with this service: Open the navigation menu. Under Database, click NoSQL Database. See NoSQL Database in the Oracle Cloud Infrastructure User Guide.

• Notifications helps you publish messages using topics and subscriptions. To work with this service: Open the navigation menu. Under Solutions and Platform, go to Application Integration and click Notifications. See "Overview of Notifications" in the Oracle Cloud Infrastructure User Guide.

• Object Storage helps you manage data as objects stored in containers. To work with this service: Open the navigation menu. Under Core Infrastructure, click Object Storage. See "Overview of Object Storage" in the Oracle Cloud Infrastructure User Guide.

• Operations Insights provides 360-degree insight into the resource utilization and capacity of Oracle Autonomous Databases. You can easily analyze CPU and storage resources, forecast capacity issues, and proactively identify SQL performance issues across a fleet of Autonomous Databases. To work with this service: Open the navigation menu. Under Monitoring and Diagnostics, go to Operations Insights and click Overview. See the online documentation: Operations Insights.

• OS Management helps you keep operating platforms in your Compute instances secure and up to date with the latest patches and updates from the respective vendor. To work with this service: Open the navigation menu. Under Core Infrastructure, go to Compute and click OS Management. See "Overview of OS Management" in the Oracle Cloud Infrastructure User Guide.

• Service Connector Hub is a cloud message bus platform that offers a single pane of glass for describing, executing, and monitoring interactions when moving data between Oracle Cloud Infrastructure services. To work with this service: Open the navigation menu. Under Data and AI, click Service Connector Hub. See "Overview of Service Connector Hub" in the Oracle Cloud Infrastructure User Guide.

• Registry helps you store, share, and manage development artifacts like Docker images in an Oracle-managed registry. To work with this service: Open the navigation menu. Under Solutions and Platform, go to Developer
Using the Console

Services and click Container Registry. See "Overview of Registry" in the Oracle Cloud Infrastructure User Guide.

• Resource Manager helps you install, configure, and manage resources using the "infrastructure-as-code" model. To work with this service: Open the navigation menu. Under Solutions and Platform, go to Resource Manager and click Stacks or Jobs. See "Overview of Resource Manager" in the Oracle Cloud Infrastructure User Guide.

• Security Zones let you be confident that your resources comply with Oracle security principles. If any resource operation violates a security zone policy, then the operation is denied. To work with this service: Open the navigation menu. Under Governance and Administration, go to Security and click Security Zones.

• The Traffic Management Steering Policies service helps you guide traffic to your endpoints based on various conditions, including endpoint health and the geographic origins of DNS requests. To work with this service: Open the navigation menu. Under Core Infrastructure, go to Networking and click Traffic Management Steering Policies. See "Overview of the Traffic Management Steering Policies Service" in the Oracle Cloud Infrastructure User Guide.

• The Vault service helps you centrally manage the encryption keys that protect your data and the secret credentials that you use to access resources. To work with this service: Open the navigation menu. Under Governance and Administration group, go to Security and click Vault. See "Overview of Vault" in the Oracle Cloud Infrastructure User Guide.

• The WAF service helps you to make your endpoints more secure by monitoring and filtering out potentially malicious traffic. To work with this service: Open the navigation menu. Under Governance and Administration, go to Security and click Web Application Firewall. See "Overview of the Web Application Firewall Service" in the Oracle Cloud Infrastructure User Guide.

Navigating to More Oracle Cloud Services from the Console

For more details about accessing other Oracle Cloud offerings, see Navigate to Your Cloud Services.

The Oracle Cloud Console provides navigation to other Oracle Cloud services in addition to Oracle Cloud Infrastructure services.

If your account also has Oracle Cloud Platform services, Oracle Cloud Infrastructure Classic services or Oracle Cloud Applications, then you can navigate to these services from the Oracle Cloud Console:
Navigating to Platform Services
Open the navigation menu. Under More Oracle Cloud Services, go to Platform Services and click the service you want to access.

Navigating to Classic Data Management Services
Open the navigation menu. Under More Oracle Cloud Services, go to Classic Data Management Services and click the service you want to access.

Navigating to Classic Infrastructure Services
Open the navigation menu. Under More Oracle Cloud Services, go to Classic Infrastructure Services and click the service you want to access.

Navigating to the Applications Console
If your Cloud account also has Cloud Applications services provisioned, then you have access to the Applications Console.
In the Console header, click Applications to switch to the Applications Console.
For more information about the consoles for these Oracle Cloud services, see About the Consoles.

Filtering the Displayed List of Resources
To help you locate a resource, some resources let you filter the list that is displayed.
Filters include:
State: You can display only the resources that are in the state you select. Valid values for state can vary by resource. Examples are:

- Any state - includes all lifecycle states for the resource
- Available
- Provisioning
- Terminating
- Terminated

Availability Domain: For resources that reside in a single *availability domain*, you can limit the list to the resources that reside in the availability domains you select. For a list of availability domain-specific resources, see Resource Availability.

Tags: Resources that support tagging let you filter the list by tags.

To filter a list of resources by a defined tag

1. Next to Tag Filters, click add.
2. In the Apply a Tag Filter dialog, enter the following:
 a. Namespace: Select the tag namespace.
 b. Key: Select a specific key.
 c. Value: Select from the following:
 - Match Any Value - returns all resources tagged with the selected namespace and key, regardless of the tag value.
 - Match Any of the Following - returns resources with the tag value you enter in the text box. Enter a single value in the text box. To specify multiple values for the same namespace and key, click + to display another text box. Enter one value per text box.
 d. Click Apply Filter.

To filter a list of resources by a free-form tag

1. Next to Tag Filters, click add.
2. In the Apply a Tag Filter dialog, enter the following:
 a. Key: Enter the tag key.
 b. Value: Select from the following:
 - Match Any Value - returns all resources tagged with the selected free-form tag key, regardless of the tag value.
 - Match Any of the Following - returns resources with the tag value you enter in the text box. Enter a single value in the text box. To specify multiple values for the same key, click + to display another text box. Enter one value per text box.
 c. Click Apply Filter.

Switching Regions

Your current region is displayed at the top of the Console. If your tenancy is subscribed to multiple regions, you can switch regions by selecting a different region from the Region menu.
Working Across Regions

When working within a service, the Console displays resources that are in the currently selected region. So if your tenancy has instances in CompartmentA in US West (Phoenix), and instances in CompartmentA in US East (Ashburn), you can only view the instances in one region at a time, even though the instances are in the same compartment.

Using the following figure as an example, if you select US West (Phoenix) and then select CompartmentA, you see instances 1 and 2 listed. To see instances 3 and 4 in the Console, you must switch to US East (Ashburn) (and then you no longer see instances 1 and 2).

To view resources across regions that are in a specific compartment, you can use the compartment explorer.

IAM resources (compartments, users, groups, policies, tags, and federation providers) are global, so you can see those resources no matter which region you have selected in the Console.
Switching Languages

The Console automatically detects the language setting in your browser. However, if you want to view the Console in a different language, you can change it by using the language selector in the Console.

The language selector supports the following languages:

- Chinese (Simplified)
- Chinese (Traditional)
- Croatian
- Czech
- Danish
- Dutch
- English
- Finnish
- French (Canada)
- French (Europe)
- German
- Greek
- Hungarian
- Italian
- Japanese
- Korean
- Norwegian
- Polish
- Portuguese (Brazil)
- Portuguese (Portugal)
- Romanian
- Russian
- Serbian
- Slovak
- Slovenian
- Spanish
- Swedish
- Thai
- Turkish
The language you choose persists between sessions. However, the language setting is specific to the browser. If you change to a different browser, the Console displays text in the language last selected in the language selector. If it's the first time you're viewing the Console in a particular browser, the Console displays content according to the browser's language setting.

Entering Information to the Console

<table>
<thead>
<tr>
<th>Caution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid entering confidential information when assigning descriptions, tags, or friendly names to your cloud resources through the Oracle Cloud Infrastructure Console, API, or CLI.</td>
</tr>
</tbody>
</table>

Chat Online with an Oracle Representative

If you signed up for an Oracle Cloud Free Trial, use the online chat to get help. If you’ve purchased Oracle Cloud services, it’s recommended that you use My Oracle Support to get help.

To start a live online chat with an Oracle Support or Sales representative, click the Live Chat icon at the top of the Console.

Follow the prompts in the chat box to interact with an Oracle agent.

Signing Out

To sign out of the Console, open the Profile menu and then click Sign Out.
Important:
The Oracle Cloud Infrastructure Mobile app is currently in testing. We look forward to rolling it out in the near future.

This topic provides basic information about the Oracle Cloud Infrastructure Mobile app.

Installing the Oracle Cloud Infrastructure Mobile App
To download and install the app, in the Google Play Store or Apple App Store, search for Oracle Cloud, and follow the installation steps. The app is supported on the following operating systems:

- Android 8 and later versions
- iOS 11 and later versions

Signing In
To sign in to the Oracle Cloud Infrastructure Mobile app, use the same credentials and steps that you use to sign in to the Console. For more information, see Understanding the Sign-In Options.

The first time you sign in, you must read and accept the End User License Agreement to access the app.

Switching Regions
Your current region is displayed at the top of the mobile app. If your tenancy is subscribed to multiple regions, you can switch regions by selecting a different region from the Region picker.

Switching Time Zones
You can set the mobile app to use UTC time or local time. To switch the time zone:

1. In the app, open the Profile menu (👤) and then tap Settings.
2. In the Time zone menu, tap Local or UTC.

Navigating in the Mobile App
When you sign in to the app, you see the Home tab.
Home

- The Alarms section displays information about alarms fired within the last 24 hours. For more details, tap an alarm in the list, or navigate to the Alarms tab.
- Tap the tiles in the Resources menu to see details about that type of resource.
- For trial users, the Billing section displays current information about costs associated with resource usage.

In addition to the Home tab, the app has Alarms, Resources, and Limits tabs.

Alarms

The Alarms tab displays details about alarms fired within the last 24 hours. At the top of the tab, use the Compartment picker to select your compartment. To see details about a specific alarm, tap that alarm in the list. For more information about alarms, see Monitoring Overview.

Resources

The Resources tab displays details about a selection of resources. At the top of the tab, use the Compartment picker to select your compartment.

Currently, you can view details about the following types of resources in the mobile app.
- Compute instances
- Block volumes
- Object Storage
- Load balancers
- Autonomous Transaction Processing
- Autonomous Data Warehouse

Tap a section to see a list of resources of that type. At the top of the tab, use the Compartment picker to select your compartment. Use the Filter resources text box to search for resource using a free text search based on keywords. For more information, see Search Overview. The indicator next to the resource name let's you know the status of the resource.

To see resource details, tap the resource name in the list. This action takes you to a view that displays information about that resource, including:
- Resource status
- Visualizations with metrics that let you monitor the health, capacity, and performance of your resources
- Metadata for the resource

Limits

The Limits tab displays details about your current service limits and usage. The service limit is the quota or allowance set on a resource. For example, your tenancy is allowed a maximum number of compute instances per availability domain. These limits are usually established with your Oracle sales representative when you purchase Oracle Cloud Infrastructure. For more information about service limits, see Service Limits.

To view limits, at the top of the Limits tab:
1. Filter the list to the limits you want to see:
 - Use the Compartment picker to select your compartment.
 - Use the Resource picker to select a service.
2. After making your selections, tap Search limits to see the list of limits and current usage.

Each item in the resulting list shows a description of the service limit, the current usage for that service, and the total limit available.
Signing Out

To sign out of the Oracle Cloud Infrastructure Mobile app, open the Profile menu (👤) and then tap Sign Out.

Contacting Support

To open a support request for the Oracle Cloud Infrastructure Mobile app, sign in to the Console on a computer and follow the steps to create a support request. When you create the request, in the issue summary, include the prefix OCI Mobile to specify that the support request is for the mobile app. For more information, see Getting Help and Contacting Support on page 142.

Caution:
Avoid entering confidential information when assigning descriptions, tags, or friendly names to your cloud resources through the Oracle Cloud Infrastructure Console, API, or CLI.

To create a support request

1. Open the Help menu (помощь), go to Support, and click Create support request.
2. Enter the following:
 - **Issue summary**: Enter a title that summarizes your issue.
 - **Describe your issue**: Provide a brief overview of your issue.
 - Include all the information that support needs to route and respond to your request. For example, "I am unable to connect to my Compute instance."
 - Include troubleshooting steps taken and any available test results.
 - For many Oracle Cloud Infrastructure issues, you need to include the OCID (Oracle Cloud Identifier) for each resource you need help with. See Locating Oracle Cloud Infrastructure IDs on page 144 for instructions explaining how to locating these.
 - Select the severity level for this request.
3. Click Create Request.
Chapter 9

Changing Your Password

This topic describes how users can change their own passwords.

To Change Your Password

Procedure for Oracle Identity Cloud Service users

1. Open the Profile menu (-profile) and click User Settings.

Your Oracle Cloud Infrastructure IAM service User Details page is displayed. Notice that your username is prefixed with the name of your IDCS federation, for example: oracleidentitycloudservice/User
2. The information banner at the top of the page tells you that your account is managed in Oracle Identity Cloud Service. Click the here link.

3. Your Identity Cloud Service User Details page is displayed. Notice that on this page, your username is displayed without the prefix.

4. Click Change Password.
5. Follow the instructions in the dialog to create a new password.

Procedure for local Oracle Cloud Infrastructure users

Use this procedure if your sign-in page looks like the following image and you sign in through Oracle Cloud Infrastructure.
1. Sign in to the Console using the Oracle Cloud Infrastructure Username and Password.

2. After you sign in, go to the top-right corner of the Console, open the Profile menu (👤) and then click Change Password.

3. Enter the current password.

4. Follow the prompts to enter the new password, and then click Save New Password.
Checking Your Balance and Usage

This topic describes how to analyze the Oracle Cloud Infrastructure costs associated with your account.

Required IAM Policy

To enable users to monitor the costs associated with this account, you will have to grant them access by writing a policy. If you're new to policies, see Getting Started with Policies and Common Policies.

The following policy statement gives users in a specified group the ability to analyze costs in the tenancy:

Let users analyze costs

Type of access: Ability to see costs for the tenancy.

Where to create the policy: In the tenancy so that users in the <Example_Group> can see costs for the entire account.

Allow group <Example_Group> to read usage-reports in tenancy

Working with Costs Analysis Tools

Note:

There are two versions of the Cost Analysis tool: The Classic Version interface described below, and the Latest Version interface. When you log in to the Console and select Account Management and go to Cost Analysis, the Latest Version of the Cost Analysis tool is displayed by default. Click Switch to Classic Version if you prefer the Classic version of the tool. When switching from the Latest Version to Classic Version, any inputs you have made are not maintained. For more information on the Cost Analysis tools, see Cost Analysis Overview.

To filter costs by dates

1. Open the navigation menu. Under Governance and Administration, go to Account Management and click Cost Analysis.
2. In Start Date, select a date.
3. In End Date, select a date (within six months of the start date).
4. Click Apply Filters.

To filter costs by tags

1. Open the navigation menu. Under Governance and Administration, go to Account Management and click Cost Analysis.
2. From **Tag Key**, select a tag.
3. Click **Apply Filters**.

To filter costs by compartments

1. Open the navigation menu. Under **Governance and Administration**, go to **Account Management** and click **Cost Analysis**.
2. From **Compartment**, select a compartment.
3. Click **Apply Filters**.

To remove a compartment or tag filter

- When you filter costs, a label appears with the name of the tag or compartment filter. To clear that filter, click the x.

Changing Your Payment Method

This topic describes how to upgrade to a paid account, or change your payment method. This topic also describes how to terminate your paid subscription.

Required IAM Policy

To upgrade to a paid account or change your credit card, you must be a member of the Administrators group. See [The Administrators Group and Policy](#).

Upgrade Your Free Account

Most new customers in the United States who create new accounts after January 28, 2019 can use these tools. If you created your account prior to that date or from outside the United States, use the following links:

- To upgrade to a paid account, see [Upgrade Your Free Oracle Cloud Promotion](#).
- To change your credit card, see [Update Your Account Details](#).

To upgrade to Pay-as-You-Go

1. Open the navigation menu. Under **Governance and Administration**, go to **Account Management** and click **Payment Method**.
2. Under **Account Type**, select **Pay-as-You-Go**.
3. Take one of the following actions:
 - Click **Edit** to review the current credit card
 - Click **Add a Credit Card**
4. Type or review your information and click **Finish**.
5. Read the terms and conditions and select the check box to indicate your agreement.
6. Click **Start Paid Account**.

To request a sales call

1. Open the navigation menu. Under **Governance and Administration**, go to **Account Management** and click **Payment Method**.
2. Under **Account Type**, select **Request a Sales Call**.
3. Type a phone number, an email address, or both.
4. Click **Submit**.

To change your payment method

You cannot change the payment method for promotional accounts.
1. Open the navigation menu. Under **Governance and Administration**, go to **Account Management** and click **Payment Method**.
2. Click **Edit Card**.
3. Type your information and click **Finish**.

Terminating Your Account

You can terminate your account at any time through a support request. From the time that your request is processed, billing is stopped (even if you have running instances), and any running resources are terminated.
Adding Users

This chapter provides a quick hands-on tutorial for adding users and groups and creating simple policies to grant them permissions to work with Oracle Cloud Infrastructure resources.

Use these instructions to quickly add some users to try out features. To fully understand the features of IAM and how to manage access to your cloud resources, see "Overview of IAM" in the Oracle Cloud Infrastructure User Guide.

For an overview of user management for all Oracle Cloud services, see Managing Users, User Accounts, and Roles.

About Users, Groups, and Policies

A user’s permissions to access Oracle Cloud Infrastructure services comes from the groups to which they belong. The permissions for a group are defined by policies. Policies define what actions members of a group can perform, and in which compartments. Users can then access services and perform operations based on the policies set for the groups they are members of.

About Oracle Identity Cloud Service Federated Users

When you sign up for Oracle Cloud Infrastructure, your tenancy is federated with Oracle Identity Cloud Service (IDCS) as the identity provider. You can create users and groups in IDCS that you can use with your Oracle Cloud products. To give these users permissions in Oracle Cloud Infrastructure, you need to perform some steps in IDCS and some steps in Oracle Cloud Infrastructure.

You can create your IDCS users and groups directly in the Console. The examples in the following sections include examples of creating IDCS users who can use Oracle Cloud Infrastructure services.

For more details on managing federated users, see Managing Oracle Identity Cloud Service Users and Groups in the Oracle Cloud Infrastructure Console.

You can also choose to use Oracle Cloud Infrastructure's IAM service as your identity provider to manage users and groups exclusively in the IAM service. These users can have permissions to use Oracle Cloud Infrastructure services only. If you want to manage users in the IAM service, see Managing Users.

Sample Users and Groups

To help you understand how to set up users with the access permissions they need, perform the following tasks to set up these two basic types of users:

- An IDCS federated user with full administrator permissions (Cloud Administrator)
- An IDCS federated user with permissions to use one compartment only
Add a User with Oracle Cloud Administrator Permissions

The user you create in this task will have full administrator permissions of the default administrator. This means that the user has full access to all compartments and can create and manage all resources in Oracle Cloud Infrastructure as well as other services managed through Oracle Identity Cloud Service. You must have Cloud Administrator permissions to complete this task.

Create a Cloud Administrator user

1. Open the navigation menu. Under Governance and Administration, go to Identity and click Federation.
2. Click your Oracle Identity Cloud Service federation. For most tenancies, the federation is named OracleIdentityCloudService. The identity provider details page is displayed.
3. Click Create IDCS User.
4. In the Create IDCS User dialog enter the following:
 • Username: Enter a unique name or email address for the new user. The value will be the user's login to the Console and must be unique across all other users in your tenancy.
 • Email: Enter an email address for this user. The initial sign-in credentials will be sent to this email address.
 • First Name: Enter the user's first name.
 • Last Name: Enter the user's last name.
 • Phone Number: Optionally, enter a phone number.
 • Groups: You can skip this step. You will be granting this user full administrator privileges.
5. Click Create.
 The user is created in Oracle Identity Cloud Service. This user can't access their account until they complete the password reset steps.
6. Click Email Password Instructions to send the password link and instructions to the user. If your email app does not launch, copy the reset instructions and manually email them to the user.
 The password link is good for 24 hours. If the user does not reset their password in time, you can generate a new password link by clicking Reset Password for the user.
7. Click close to close the dialog. You are returned to the Users list on the Identity Provider Details page.
8. Click the name of the user you just created. The User Details page is displayed.
9. Click Manage Roles.
10. Select the check box next to Add Cloud Account Administrator Role.
11. Click Apply Role Settings.
12. A dialog confirms the entitlements granted to the user. To notify the user of these updates, click Send Email to User. Click Close to close the dialog.

Create a Compartment and Add a User with Access to It

In this example, create a compartment called “Sandbox” and then create a user with access to only that compartment.

Procedure Overview: To provide access to the Sandbox compartment and all the resources in it, you create a group (SandboxGroup), and then create a policy (SandboxPolicy) to define the access rule.

To enable access for users created in Identity Cloud Service, create a group in IDCS (IDCSSandboxGroup), and map it to the SandboxGroup.

Finally, create an IDCS user and add them to the IDCSSandboxGroup.

Create a sandbox compartment

1. Open the navigation menu. Under Governance and Administration, go to Identity and click Compartments.
2. Click Create Compartment.
3. Enter the following:
 - **Name:** Enter Sandbox.
 - **Description:** Enter a description (required), for example: Sandbox compartment for users to try out OCI.

4. Click **Create Compartment**.
 Your compartment is displayed in the list.

Create an Oracle Cloud Infrastructure group

Next, create the "SandboxGroup" that you will create the policy for.

1. Open the navigation menu. Under **Governance and Administration**, go to **Identity** and click **Groups**.
2. Click **Create Group**.
3. In the **Create Group** dialog:
 - **Name:** Enter a unique name for your group, for example, SandboxGroup.
 Note that the name cannot contain spaces.
 - **Description:** Enter a description (required).
4. Click **Create**.

Create a policy

Create the policy to give the SandboxGroup permissions in the Sandbox compartment.

1. Open the navigation menu. Under **Governance and Administration**, go to **Identity** and click **Policies**.
2. Under **List Scope**, ensure that you are in your root compartment.
3. Click **Create Policy**.
4. Enter a unique **Name** for your policy, for example, SandboxPolicy.
 Note that the name cannot contain spaces.
5. Enter a **Description** (required), for example, Grants users full permissions on the Sandbox compartment.
6. Enter the following **Statement**:
   ```plaintext
   Allow group SandboxGroup to manage all-resources in compartment Sandbox
   ```
 This statement grants members of the SandboxGroup group full access to the Sandbox compartment.
7. Click **Create**.

Create an Oracle Identity Cloud Service group

Next, create the "IDCS_SandboxGroup" in Oracle Identity Cloud Service.

1. Open the navigation menu. Under **Governance and Administration**, go to **Identity** and click **Federation**.
2. Click your Oracle Identity Cloud Service federation. For most tenancies, the federation is named **OracleIdentityCloudService**. The identity provider details page is displayed.
3. Under **Resources**, click **Groups**.
4. Click create **IDCS Group**.
5. In the **Create IDCS Group** dialog enter the following:
 - **Name:** Enter a unique name for your group, for example, IDCS_SandboxGroup.
 Note that the name cannot contain spaces.
 - **Description:** Enter a description (required).
6. Click **Create**.
 The group is created and it is displayed in the identity provider details page. Next, map the group.
Map the Oracle Identity Cloud Service Group to the Oracle Cloud Infrastructure group

Next, you need to map the Oracle Identity Cloud Service group to the Oracle Cloud Infrastructure group you created. The mapping gives the members of the IDCS group the permissions you granted to the OCI group.

1. On the identity provider details page, click **Group Mapping**. The group mappings are displayed.
2. Click **Edit Mapping**.
3. Click **+ Add Mapping**.
4. From the **Identity Provider Group** menu list, choose the IDCS_SandboxGroup.
5. From the **OCI Group** menu list, select the SandboxGroup.
6. Click **Submit**.

Users that are members of the Oracle Identity Cloud Service groups mapped to the Oracle Cloud Infrastructure groups are now listed in the Console on the Users page. See **Managing User Capabilities for Federated Users** for more information on assigning these users additional credentials.

Create a user

1. Open the navigation menu. Under **Governance and Administration**, go to **Identity** and click **Federation**.
2. Click your Oracle Identity Cloud Service federation. For most tenancies, the federation is named **OracleIdentityCloudService**. The identity provider details page is displayed.
3. Click **Create IDCS User**.
4. In the **Create IDCS User** dialog enter the following:
 - **Username**: Enter a unique name or email address for the new user. The value will be the user's login to the Console and must be unique across all other users in your tenancy.
 - **Email**: Enter an email address for this user. The initial sign-in credentials will be sent to this email address.
 - **First Name**: Enter the user's first name.
 - **Last Name**: Enter the user's last name.
 - **Phone Number**: Optionally, enter a phone number.
 - **Groups**: Select the group you created in the previous step, for example, IDCS_SandboxGroup.
5. Click **Create**.

The user is created in Oracle Identity Cloud Service. This user can't access their account until they complete the password reset steps.

6. Click **Email Password Instructions** to send the password link and instructions to the user.

The password link is good for 24 hours. If the user does not reset their password in time, you can generate a new password link by clicking **Reset Password** for the user.

When this user signs in they can see the compartments they have access to and they can only view, create, and manage resources in the Sandbox compartment. This user cannot create other users or groups.
In this tutorial you will:

- Create a cloud network and subnet that enables internet access
- Launch an instance
- Connect to the instance
- Add and attach a block volume

The following figure depicts the components you create in the tutorial.
Task Flow to Launch an Instance

Linux instances use an SSH key pair instead of a password to authenticate a remote user. If you do not already have a key pair, your first task is to create one using common third-party tools (if you have OpenSSH, you can instead use a key pair that is generated by Oracle Cloud Infrastructure). Next, prepare for your instance by launching a cloud network with subnets. You will then launch your instance into one of the subnets and connect to it. If you want to attach some storage, continue with the tutorial to add a cloud block storage volume. When finished with the tutorial, be sure to terminate the resources that you created.

Prepare:
- Create a key pair.
- Choose a compartment for your resources.
- Create a cloud network.

Launch and connect:
- Launch an instance.
- Connect to your instance.

Add storage and clean up:
- Add a block volume (optional).
- Clean up your resources.

Creating a Key Pair

Linux instances use an SSH key pair instead of a password to authenticate a remote user. A key pair file contains a private key and public key. You keep the private key on your computer and provide the public key when you create an instance. When you connect to the instance using SSH, you provide the path to the private key in the SSH command.

<table>
<thead>
<tr>
<th>Caution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anyone who has access to the private key can connect to the instance. Store the private key in a secure location.</td>
</tr>
</tbody>
</table>

If you're connecting to your instance from a computer that has OpenSSH installed, you can use a key pair that is generated by Oracle Cloud Infrastructure instead of creating your own key pair.

Before You Begin

- If you will connect to your instance from a Windows system using OpenSSH or from a UNIX-based system, you can use a key pair that is generated by Oracle Cloud Infrastructure and skip this step. OpenSSH should be installed on Windows 10 and Windows Server 2019. Proceed to Choosing a Compartment on page 68.
- If you already have an SSH-2 RSA key pair, you can use your existing key pair and skip this step. Proceed to Choosing a Compartment on page 68.
- If you will connect to your instance from a Windows system that does not have OpenSSH, download and install the PuTTY Key Generator from http://www.putty.org.

Creating an SSH Key Pair on Windows Using PuTTY Key Generator

1. Find puttygen.exe in the PuTTY folder on your computer, for example, C:\Program Files (x86)\PuTTY. Double-click puttygen.exe to open it.
2. Specify a key type of SSH-2 RSA and a key size of 2048 bits:
 • In the Key menu, confirm that the default value of **SSH-2 RSA key** is selected.
 • For the **Type of key to generate**, accept the default key type of **RSA**.
 • Set the **Number of bits in a generated key** to 2048 if it is not already set.

3. Click **Generate**.

4. Move your mouse around the blank area in the PuTTY window to generate random data in the key.

When the key is generated, it appears under **Public key for pasting into OpenSSH authorized_keys file**.

5. **A Key comment** is generated for you, including the date and time stamp. You can keep the default comment or replace it with your own more descriptive comment.

6. Leave the **Key passphrase** field blank.

7. Click **Save private key**, and then click **Yes** in the prompt about saving the key without a passphrase.

 The key pair is saved in the PuTTY Private Key (PPK) format, which is a proprietary format that works only with the PuTTY tool set.

 You can name the key anything you want, but use the **ppk** file extension. For example, `mykey.ppk`.

8. Select **all** of the generated key that appears under **Public key for pasting into OpenSSH authorized_keys file**, copy it using **Ctrl + C**, paste it into a text file, and then save the file in the same location as the private key.

 (Do not use **Save public key** because it does not save the key in the OpenSSH format.)

 You can name the key anything you want, but for consistency, use the same name as the private key and a file extension of **pub**. For example, `mykey.pub`.

9. Write down the names and location of your public and private key files. You will need the public key when launching an instance. You will need the private key to access the instance via SSH.

Choosing a Compartment

Compartment helps you organize and control access to your resources. A compartment is a collection of related resources (such as cloud networks, compute instances, or block volumes) that can be accessed only by those groups that have been given permission by an administrator in your organization. For example, one compartment could contain all the servers and storage volumes that make up the production version of your company’s Human Resources system. Only users with permission to that compartment can manage those servers and volumes.

In this tutorial you use one compartment for all your resources. When you are ready to create a production environment you will most likely separate these resources in different compartments.

Before You Begin

Sign in to the Console.

Choosing a Compartment

To begin working with a service, you must first select a service, and then select a compartment that you have permissions in.

1. In this tutorial, the first resource you create is the cloud network. Open the navigation menu. Under **Core Infrastructure**, go to **Networking** and click **Virtual Cloud Networks**.
2. Select the Sandbox compartment (or the compartment designated by your administrator) from the list on the left, as shown in the image. If the Sandbox compartment does not exist, you can create it as described in Creating a Compartment.

Creating a Compartment

1. Open the navigation menu. Under Governance and Administration, go to Identity and click Compartments.
2. Click Create Compartment.
3. Enter the following:
 - **Name:** Enter "Sandbox".
 - **Description:** Enter a description (required), for example: "Sandbox compartment for the getting started tutorial". Avoid entering confidential information.
 - **Parent Compartment:** Select the compartment you want this compartment to reside in. Defaults to the root compartment (or tenancy).
4. Click Create Compartment.

 Your compartment is displayed in the list.

5. Return to Choosing a Compartment.

When you select the Sandbox compartment, you will only see resources that are in the Sandbox. When you create new resources you will be prompted to choose the compartment to create them in, but your current compartment will be the default. If you change compartments, you must come back to the Sandbox compartment to see the resources that were created there.

Creating a Virtual Cloud Network

Before you can launch an instance, you need to have a virtual cloud network (VCN) and subnet to launch it into. A subnet is a subdivision of your VCN. The subnet directs traffic according to a route table. For this tutorial, you'll access the instance over the internet using its public IP address, so your route table will direct traffic to an internet gateway. The subnet also uses a security list to control traffic in and out of the instance.

For information about VCN features, see "Overview of Networking" in the Oracle Cloud Infrastructure User Guide.

Before You Begin

- You or an administrator has created a compartment for your network. See Choosing a Compartment on page 68.
Create a Cloud Network Plus Related Resources

Tip:
The Console offers two choices when you create a VCN: to create only the VCN, or to create the VCN with several related resources that are necessary if you want to immediately launch an instance. To help you get started quickly, the following procedure creates the VCN plus the related resources.

1. Open the navigation menu. Under **Core Infrastructure**, go to **Networking** and click **Virtual Cloud Networks**. Ensure that the Sandbox compartment (or the compartment designated for you) is selected in the **Compartment** list on the left.
2. Click **Networking Quickstart**.
3. Select **VCN with Internet Connectivity**, and then click **Start Workflow**.
4. Enter the following:
 - **VCN Name**: Enter a name for your cloud network. The name is incorporated into the names of all the related resources that are automatically created. Avoid entering confidential information.
 - **Compartment**: This field defaults to your current compartment. Select the compartment you want to create the VCN and related resources in, if not already selected.
 - **VCN CIDR Block**: Enter a valid CIDR block for the VCN. For example 10.0.0.0/16.
 - **Public Subnet CIDR Block**: Enter a valid CIDR block for the subnet. The value must be within the VCN's CIDR block. For example: 10.0.0.0/24.
 - **Private Subnet CIDR Block**: Enter a valid CIDR block for the subnet. The value must be within the VCN's CIDR block and not overlap with the public subnet's CIDR block. For example: 10.0.1.0/24.
 - Accept the defaults for any other fields.
5. Click **Next**.
6. Review the list of resources that the workflow will create for you. Notice that the workflow will set up security list rules and route table rules to enable basic access for the VCN.
7. Click **Create** to start the short workflow.
8. After the workflow completes, click **View Virtual Cloud Network**.

The cloud network has the following resources and characteristics:

- Internet gateway.
- NAT gateway.
- Service gateway with access to the Oracle Services Network.
- A regional public subnet with access to the internet gateway. This subnet uses the VCN's default security list and default route table. Instances in this subnet may optionally have public IP addresses.
- A regional private subnet with access to the NAT gateway and service gateway. This subnet uses a custom security list and custom route table that the workflow created. Instances in this subnet cannot have public IP addresses.
- Use of the Internet and VCN Resolver for DNS.

Important:
This simple cloud network is designed to make it easy to launch an instance when trying out Oracle Cloud Infrastructure. When you create your production instances, ensure that you create appropriate security lists and route table rules to restrict network traffic to your instances.

What's Next
Now you can launch an instance. See **Launching a Linux Instance** on page 71.
Launching a Linux Instance

Now you will launch an instance with the Oracle Linux image and basic shape. More advanced options are available; see "Managing Instances" in the Oracle Cloud Infrastructure User Guide for more information.

Before You Begin

- You have created a virtual cloud network (VCN) and public subnet. See Creating a Virtual Cloud Network on page 69.
- If you will connect to your instance from a Windows system that does not have OpenSSH, you have a created an SSH key pair. See Creating a Key Pair on page 67.

Launching an Instance

1. Open the navigation menu. Under Core Infrastructure, go to Compute and click Instances.
2. Click Create Instance.
3. Enter a name for the instance, for example: <your initials>_<Instance. Avoid entering confidential information.
4. In the Configure placement and hardware section, make the following selections:
 a. Accept the default Availability domain.
 b. In the Image section, accept the default, Oracle Linux 7.x.
 c. In the Shape section, click Change Shape. Then, do the following:
 1. For Instance type, accept the default, Virtual Machine.
 2. For Shape series, select Intel Skylake, and then choose the VM.Standard2.1 shape (1 OCPU, 15 GB RAM).

 Tip:
 To create an instance using the Always Free-eligible VM.Standard.E2.1.Micro shape, select Specialty and Legacy, and then choose the VM.Standard.E2.1.Micro shape. If the Micro shape is disabled, cancel out of the shape selection page, select a different availability domain, and then try again.

 3. Click Select Shape.
5. In the Configure networking section, configure the network details for the instance:
 - For Network, leave Select existing virtual cloud network selected.
 - Virtual cloud network in <compartment_name>: Select the cloud network that you created. If necessary, click Change compartment to switch to the compartment containing the cloud network that you created.
 - For Subnet, leave Select existing subnet selected.
 - Subnet in <compartment_name>: Select the public subnet that was created with your cloud network. If necessary, click Change compartment to switch to the compartment containing the correct subnet.
 - Leave the Use network security groups to control traffic check box cleared.
 - Select the Assign a public IP address option. This creates a public IP address for the instance, which you need to access the instance. If you have trouble selecting this option, confirm that you selected the public subnet that was created with your VCN, not a private subnet.
6. In the Add SSH keys section, select one of the following options:
 - Generate SSH keys: If you will connect to the instance using OpenSSH, select this option. Click Save Private Key and then save the private key on your computer. Optionally, click Save Public Key and then save the public key.

 Caution:
Tutorial - Launching Your First Linux Instance

Anyone who has access to the private key can connect to the instance. Store the private key in a secure location.

- **Choose SSH key files:** If you will connect to the instance using PuTTY, select this option. To upload the public key (.pub) portion of the key pair that you want to use for SSH access to the instance, browse to the key file that you want to upload, or drag and drop the file into the box.

7. In the **Configure boot volume** section, leave all the options cleared.

8. Click **Create**.

The instance is displayed in the Console in a provisioning state. Expect provisioning to take several minutes before the state updates to running. Do not refresh the page. After the instance is running, allow another few minutes for the operating system to boot before you attempt to connect.

Getting the Instance Public IP Address

To connect to the instance in the next step, you'll need its public IP address.

To get the instance public IP address:

1. Click the instance name to see its details.
2. The **Public IP Address** and **Username** are displayed on the details page under **Instance Access**, as shown in the following image:

3. Make a note of the **Public IP Address** before you continue.

Connecting to Your Instance

You connect to a running Linux instance using a Secure Shell (SSH) connection. Most Linux distributions include an SSH client by default. Windows 10 and Windows Server 2019 systems should include the OpenSSH client, which you'll need if you created your instance using the SSH keys generated by Oracle Cloud Infrastructure. For other Windows versions, you can download a free SSH client called PuTTY from http://www.putty.org.

Before You Begin

- You know the public IP address of your instance. See **Launching a Linux Instance** on page 71.
- You know the path to the private key file.
Connecting to Your Linux Instance Using SSH

Log in to the instance using SSH.

To connect to a Linux instance from a Unix-style system

1. Use the following command to set the file permissions so that only you can read the file:

   ```
   $ chmod 400 <private_key>
   ```

 `<private_key>` is the full path and name of the file that contains the private key associated with the instance you want to access.

2. Use the following SSH command to access the instance.

   ```
   $ ssh -i <private_key> <username>@<public-ip-address>
   ```

 `<private_key>` is the full path and name of the file that contains the private key associated with the instance you want to access.

 `<username>` is the default username for the instance. For Oracle Linux and CentOS images, the default username is `opc`. For Ubuntu images, the default username is `ubuntu`.

 `<public-ip-address>` is your instance IP address that you retrieved from the Console.

To connect to a Linux instance from a Windows system using OpenSSH

1. If this is the first time you are using this key pair, you must set the file permissions so that only you can read the file. Do the following:
 a. In Windows Explorer, navigate to the private key file, right-click the file, and then click **Properties**.
 b. On the **Security** tab, click **Advanced**.
 c. Ensure that the **Owner** is your user account.
 d. Click **Disable Inheritance**, and then select **Convert inherited permissions into explicit permissions on this object**.
 e. Select each permission entry that is not your user account and click **Remove**.
 f. Ensure that the access permission for your user account is **Full control**.
 g. Save your changes.

2. To connect to the instance, open Windows PowerShell and run the following command:

   ```
   $ ssh -i <private_key> <username>@<public-ip-address>
   ```

 `<private_key>` is the full path and name of the file that contains the private key associated with the instance you want to access.

 `<username>` is the default username for the instance. For Oracle Linux and CentOS images, the default username is `opc`. For Ubuntu images, the default username is `ubuntu`.

 `<public-ip-address>` is your instance IP address that you retrieved from the Console.

To connect to a Linux instance from a Windows system using PuTTY

1. Open PuTTY.
2. In the **Category** pane, select **Session** and enter the following:

 - **Host Name (or IP address):**

 `<username>`@`<public-ip-address>`

 `<username>` is the default username for the instance. For Oracle Linux and CentOS images, the default username is `opc`. For Ubuntu images, the default username is `ubuntu`.

 `<public-ip-address>` is your instance public IP address that you retrieved from the Console

 - **Port:** 22

 - **Connection type:** SSH

3. In the **Category** pane, expand **Window**, and then select **Translation**.

4. In the **Remote character set** drop-down list, select **UTF-8**. The default locale setting on Linux-based instances is UTF-8, and this configures PuTTY to use the same locale.

5. In the **Category** pane, expand **Connection**, expand **SSH**, and then click **Auth**.

6. Click **Browse**, and then select your private key.

7. Click **Open** to start the session.

 If this is your first time connecting to the instance, you might see a message that the server's host key is not cached in the registry. Click **Yes** to continue the connection.

Running Administrative Tasks on the Instance

When you’re logged in as the default user, `opc`, you can use the `sudo` command to run administrative tasks.

What's Next

Now that you've got an instance and have successfully connected to it, consider the following next steps:

- Install software on the instance. See **Adding a Block Volume** on page 74.
- Add a block volume. See **Adding a Block Volume** on page 74.
- Add more users to work with Oracle Cloud Infrastructure. See **Adding Users** on page 62.
- Allow additional users to connect to your instance. See **Adding Users on an Instance**.
- Or, if you are finished with your instance, delete the resources that you created in the tutorial. See **Cleaning Up Resources from the Tutorial** on page 76.

Adding a Block Volume

Block Volume provides network storage to use with your Oracle Cloud Infrastructure instances. After you create, attach, and mount a volume to your instance, you can use it just as you would a physical hard drive on your computer. A volume can be attached to a single instance at a time, but you can detach it from one instance and attach to another instance, keeping your data intact.

This task shows you how to create a volume, attach it to an instance, and then connect the volume to the instance.

For complete details on Block Volume, see "Overview of Block Volume" in the *Oracle Cloud Infrastructure User Guide*.

Creating a Volume

1. Open the navigation menu. Under **Core Infrastructure**, go to **Block Storage** and click **Block Volumes**.
2. Click **Create Block Volume**.
3. In the **Create Block Volume** dialog, enter the following:
 - **Create in Compartment**: This field defaults to your current compartment. Select the compartment you want to create the volume in, if not already selected.
 - **Name**: Enter a user-friendly name. Avoid entering confidential information.
 - **availability domain**: Select the same *availability domain* that you selected for your instance. If you followed the tutorial instructions when launching your instance, this is the first AD in the list. The volume and the instance must be in the same availability domain.
 - **Size**: Enter 50 to create a 50 GB block volume.
 - **Backup Policy**: Do not select a backup policy.
 - **Tags**: Leave the tagging fields blank.

4. Click **Create Block Volume**.

A 50 GB block volume is displayed in the provisioning state. When the volume is no longer in the provisioning state, you can attach it to your instance.

Attaching the Volume to an Instance

Next you attach the volume via an *iSCSI* network connection to your instance:

1. Find your instance: Open the navigation menu. Under **Core Infrastructure**, go to **Compute** and click **Instances**.
2. Click your instance name to view its details.
3. In the Resources section, click **Attached Block Volumes**.
4. Click **Attach Block Volume**.
5. Enter the following:
 - Select *iSCSI*.
 - **Block Volume Compartment**: Select the compartment where you created the block volume.
 - **Select Volume**: Select this option.
 - **Block Volume**: Select the block volume from the list.
 - **Device Path**: If the instance supports consistent device paths, you will see a list of device paths. Select one from the list.
 - **Require CHAP Credentials**: Leave cleared.

 Tip:

 CHAP is a security protocol. You can leave this box cleared for the purposes of the tutorial. When you set up your production environment, Oracle recommends requiring CHAP credentials.

 - **Access**: Select **Read/Write**.

6. Click **Attach**.

Connecting to the Volume

After your volume is attached, you can configure the *iSCSI* connection. You connect to the volume using the *iscsiadm* command-line tool. The commands you need to configure, authenticate, and log on are provided by the Console so you can easily copy and paste them into your instance session window. After the connection is configured, you can mount the volume on your instance and use it just as you would a physical hard drive.

To connect to your volume:

1. Log on to your instance as described in **Connecting to Your Instance** on page 72.
2. Open the navigation menu. Under **Core Infrastructure**, go to **Compute** and click **Instances**.
3. Click your instance name to view its details.
4. In the Resources section, click **Attached Block Volumes**.
5. Click the Actions icon (three dots) next to the volume you just attached and then click **iSCSI Commands and Information**.

The **iSCSI Commands and Information** dialog is displayed. Notice that the dialog displays specific identifying information about your volume (such as IP address and port) as well as the iSCSI commands you'll need to use. The commands are ready to use with the appropriate information already included in each command.

6. The **Attach Commands** configure the iSCSI connection and log on to iSCSI. Copy and paste each command from the **Attach Commands** list into the instance session window.

Be sure to paste and run each command individually. There are three attach commands. Each command begins with `sudo iscsiadm`.

7. After entering the final command to log on to iSCSI, you are ready to format (if needed) and mount the volume. To get a list of mountable iSCSI devices on the instance, run the following command:

```
sudo fdisk -l
```

If your disk attached successfully, you'll see it in the returned list as follows:

```
Disk /dev/sdb: 50.0 GB, 50010783744 bytes, 97677312 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 4096 bytes / 1048576 bytes
```

Important:

Connecting to Volumes on Linux Instances

When connecting to volumes on Linux instances, if you want to automatically mount these volumes on instance boot, you need to use some specific options in the `/etc/fstab` file, or the instance may fail to launch. See **Traditional fstab Options** and **fstab Options for Block Volumes Using Consistent Device Paths** for more information.

What's Next

Now that you've got an instance running and attached some storage, consider the following next steps:

- Install your own software on the instance.
- Add more users to work with Oracle Cloud Infrastructure. See **Adding Users** on page 62.
- Or, if you are finished with your instance, delete the resources that you created in the tutorial. See **Cleaning Up Resources from the Tutorial** on page 76.

Cleaning Up Resources from the Tutorial

After you've finished with the resources you created for this tutorial, clean up by terminating the instance and deleting the resources you don't intend to continue working with.

Detach and Delete the Block Volume

1. Open the navigation menu. Under **Core Infrastructure**, go to **Compute** and click **Instances**.
2. Find your instance in the **Instances** list and click its name to display its details.
3. In the **Resources** section on the **Instance Details** page, click **Attached Block Volumes**.
4. Find your volume, click the Actions icon (three dots), and then click **Detach**.
5. Click **Continue Detachment** and then click **OK**.
6. When the Console shows the volume status as Detached, you can delete the volume. Open the navigation menu. Under **Core Infrastructure**, go to **Block Storage** and click **Block Volumes**.
7. Find your volume, click the Actions icon (three dots), and then click **Terminate**. Confirm when prompted.
Terminate the Instance

1. Open the navigation menu. Under **Core Infrastructure**, go to **Compute** and click **Instances**.
2. In the list of instances, find the instance you created in the tutorial.
3. Click the Actions icon (three dots), and then click **Terminate**.
4. Select the **Permanently delete the attached boot volume** check box, and then click **Terminate Instance**.

Delete the Virtual Cloud Network

1. Open the navigation menu. Under **Core Infrastructure**, go to **Networking** and click **Virtual Cloud Networks**.
2. In the list of VCNs, find the one you created in the tutorial.
3. Click the Actions icon (three dots), and then click **Terminate**.
4. Click **Terminate All** to delete all the underlying resources of your VCN.

 When all the resources are successfully deleted you can close the dialog.
In this tutorial you'll learn the basic features of Oracle Cloud Infrastructure by performing some guided steps to launch and connect to a Windows instance. After your instance is up and running, you can optionally create and attach a block volume to your instance.

In this tutorial you will:

- Create a cloud network and subnet that enables internet access
- Launch an instance
- Connect to the instance
- Add and attach a block volume

The following figure depicts the components you create in the tutorial.
Task Flow to Launch a Windows Instance

You will connect to your instance using Remote Desktop Connection and a one-time password that is created when you launch the instance. Before you can launch the instance, you must create a virtual cloud network (VCN) with subnets. You will then launch your instance into one of the subnets of your VCN and connect to it. If you want to attach some storage, continue with the tutorial to add a cloud block storage volume. When finished with the tutorial, be sure to terminate the resources that you created.

Prepare:
- Choose a compartment for your resources.
- Create a cloud network.

Launch and connect:
- Launch a Windows instance.
- Connect to your Windows instance.

Add storage and clean up:
- Add a block volume (optional).
- Clean up your resources.

Choosing a Compartment

Compartments help you organize and control access to your resources. A compartment is a collection of related resources (such as cloud networks, compute instances, or block volumes) that can be accessed only by those groups that have been given permission by an administrator in your organization. For example, one compartment could contain all the servers and storage volumes that make up the production version of your company's Human Resources system. Only users with permission to that compartment can manage those servers and volumes.

In this tutorial you use one compartment for all your resources. When you are ready to create a production environment you will most likely separate these resources in different compartments.

Before You Begin

Sign in to the Console.

Choosing a Compartment

To begin working with a service, you must first select a service, and then select a compartment that you have permissions in.

1. In this tutorial, the first resource you create is the cloud network. Open the navigation menu. Under **Core Infrastructure**, go to **Networking** and click **Virtual Cloud Networks**.
2. Select the Sandbox compartment (or the compartment designated by your administrator) from the list on the left, as shown in the image. If the Sandbox compartment does not exist, you can create it as described in Creating a Compartment.

Creating a Compartment

1. Open the navigation menu. Under Governance and Administration, go to Identity and click Compartments.
2. Click Create Compartment.
3. Enter the following:
 - **Name:** Enter "Sandbox".
 - **Description:** Enter a description (required), for example: "Sandbox compartment for the getting started tutorial". Avoid entering confidential information.
 - **Parent Compartment:** Select the compartment you want this compartment to reside in. Defaults to the root compartment (or tenancy).
4. Click Create Compartment.
 Your compartment is displayed in the list.
5. Return to Choosing a Compartment.

When you select the Sandbox compartment, you will only see resources that are in the Sandbox. When you create new resources you will be prompted to choose the compartment to create them in, but your current compartment will be the default. If you change compartments, you must come back to the Sandbox compartment to see the resources that were created there.

Creating a Virtual Cloud Network

Before you can launch an instance, you need to have a virtual cloud network (VCN) and subnet to launch it into. A subnet is a subdivision of your VCN. The subnet directs traffic according to a route table. For this tutorial, you’ll access the instance over the internet using its public IP address, so your route table will direct traffic to an internet gateway. The subnet also uses a security list to control traffic in and out of the instance.

For information about VCN features, see "Overview of Networking" in the Oracle Cloud Infrastructure User Guide.

Before You Begin

- You or an administrator has created a compartment for your network. See Choosing a Compartment on page 79.
Create a Cloud Network Plus Related Resources

Tip:
The Console offers two choices when you create a VCN: to create only the VCN, or to create the VCN with several related resources that are necessary if you want to immediately launch an instance. To help you get started quickly, the following procedure creates the VCN plus the related resources.

1. Open the navigation menu. Under Core Infrastructure, go to Networking and click Virtual Cloud Networks.
 Ensure that the Sandbox compartment (or the compartment designated for you) is selected in the Compartment list on the left.
2. Click Networking Quickstart.
3. Select VCN with Internet Connectivity, and then click Start Workflow.
4. Enter the following:
 • VCN Name: Enter a name for your cloud network. The name is incorporated into the names of all the related resources that are automatically created. Avoid entering confidential information.
 • Compartment: This field defaults to your current compartment. Select the compartment you want to create the VCN and related resources in, if not already selected.
 • VCN CIDR Block: Enter a valid CIDR block for the VCN. For example 10.0.0.0/16.
 • Public Subnet CIDR Block: Enter a valid CIDR block for the subnet. The value must be within the VCN's CIDR block. For example: 10.0.0.0/24.
 • Private Subnet CIDR Block: Enter a valid CIDR block for the subnet. The value must be within the VCN's CIDR block and not overlap with the public subnet's CIDR block. For example: 10.0.1.0/24.
 • Accept the defaults for any other fields.
5. Click Next.
6. Review the list of resources that the workflow will create for you. Notice that the workflow will set up security list rules and route table rules to enable basic access for the VCN.
7. Click Create to start the short workflow.
8. After the workflow completes, click View Virtual Cloud Network.

The cloud network has the following resources and characteristics:
 • Internet gateway.
 • NAT gateway.
 • Service gateway with access to the Oracle Services Network.
 • A regional public subnet with access to the internet gateway. This subnet uses the VCN's default security list and default route table. Instances in this subnet may optionally have public IP addresses.
 • A regional private subnet with access to the NAT gateway and service gateway. This subnet uses a custom security list and custom route table that the workflow created. Instances in this subnet cannot have public IP addresses.
 • Use of the Internet and VCN Resolver for DNS.

Important:
This simple cloud network is designed to make it easy to launch an instance when trying out Oracle Cloud Infrastructure. When you create your production instances, ensure that you create appropriate security lists and route table rules to restrict network traffic to your instances.

Edit the Default Security List to Allow Traffic to Your Windows Instance

To enable network traffic to reach your Windows instance, you need to add a security list rule to enable Remote Desktop Protocol (RDP) access. Specifically, for the default security list (which is used by the public subnet), you need a stateful ingress rule for TCP traffic on destination port 3389 from source 0.0.0.0/0 and any source port.
To edit the VCN's security list:
1. Click the name of the VCN that you just created. Its details are displayed.
3. Click the default security list for your VCN.
 Its details are displayed.
4. Click Add Ingress Rules.
5. Enter the following for your new rule:
 a. Source Type: CIDR
 b. Source CIDR: 0.0.0.0/0
 c. IP Protocol: RDP (TCP/3389)
 d. Source Port Range: All
 e. Destination Port Range: 3389
6. When done, click Add Ingress Rules.

What's Next
Now you can launch an instance. See Launching a Windows Instance on page 82.

Launching a Windows Instance

Now you will launch an instance with the Oracle Windows image and basic shape. More advanced options are available, see "Managing Instances" in the Oracle Cloud Infrastructure User Guide for more information.

Before You Begin
- You have created a virtual cloud network (VCN) and public subnet. See Creating a Virtual Cloud Network on page 80.

Launching an Instance
1. Open the navigation menu. Under Core Infrastructure, go to Compute and click Instances.
2. Click Create Instance.
3. Enter a name for the instance, for example: <your initials>_Instance. Avoid entering confidential information.
 Important:
 Use only these ASCII characters in the instance name: uppercase letters (A-Z), lowercase letters (a-z), numbers (0-9), and hyphens (-). See this known issue for more information.
4. In the Configure placement and hardware section, make the following selections:
 a. Accept the default Availability domain.
 b. In the Image section, click Change Image. Then, do the following:
 2. Review and accept the terms of use, and then click Select Image.
 c. In the Shape section, click Change Shape. Then, do the following:
 1. For Instance type, accept the default, Virtual Machine.
 2. For Shape series, select Intel Skylake, and then choose the VM.Standard2.1 shape (1 OCPU, 15 GB RAM).
 The shape defines the number of CPUs and amount of memory allocated to the instance.
 3. Click Select Shape.
5. In the **Configure networking** section, configure the network details for the instance. Do **not** accept the defaults.
 - For **Network**, leave **Select existing virtual cloud network** selected.
 - **Virtual cloud network in `<compartment_name>`**: Select the cloud network that you created. If necessary, click **Change compartment** to switch to the compartment containing the cloud network that you created.
 - For **Subnet**, leave **Select existing subnet** selected.
 - **Subnet in `<compartment_name>`**: Select the public subnet that was created with your cloud network. If necessary, click **Change compartment** to switch to the compartment containing the correct subnet.
 - Leave the **Use network security groups to control traffic** check box cleared.
 - Select the **Assign a public IP address** option. This creates a public IP address for the instance, which you need to access the instance. If you have trouble selecting this option, confirm that you selected the public subnet that was created with your VCN, not a private subnet.

6. In the **Configure boot volume** section, leave all the options cleared.

7. Click **Create**.

The instance is displayed in the Console in a provisioning state. Expect provisioning to take several minutes before the state updates to Running. Do not refresh the page. After the instance is running, allow another few minutes for the operating system to boot before you attempt to connect.

Getting the Instance Public IP Address and Initial Windows Password

To connect to the instance in the next step, you'll need its public IP address and initial password.

To get the instance public IP address and initial password:

1. Click the instance name to see its details.
2. The **Public IP Address**, **Username**, and **Initial Password** are displayed on the details page, as shown in the following image:

 ![Example_Windows_Instance](image)

 Instance Access

 - **Public IP Address**: 203.0.113.2 Copy
 - **Username**: opc
 - **Initial Password**: Click **Show**. Although the Console offers a copy option, the paste option is typically not available when you are prompted to enter the password, so be prepared to enter it manually.

 3. To view the **Initial Password**, click **Show**. Although the Console offers a copy option, the paste option is typically not available when you are prompted to enter the password, so be prepared to enter it manually.

4. When you are ready to connect to the instance, make a note of both the public IP address and the initial password.
Connecting to Your Windows Instance

You connect to a running Windows instance using Remote Desktop.

Before You Begin

- You know the public IP address and initial password of your instance, see Launching a Windows Instance on page 82.
- You have Remote Desktop installed.

Connecting to Your Windows Instance from a Remote Desktop Client

1. Open the Remote Desktop client.
2. In the Computer field, enter the public IP address that you retrieved from the Console.
3. The User name is opc. Depending on the Remote Desktop client you are using, you might have to connect to the instance before you can enter this credential.
4. Click Connect to start the session.
5. Accept the certificate if you are prompted to do so.
6. Enter the initial password that you retrieved from the Console. You will be prompted to change the password as soon as you log in.

 Your new password must be at least 12 characters long and must comply with Microsoft's password policy.
7. Press Enter.

Running Administrative Tasks on the Instance

The default user, opc, has administrative privileges.

What's Next

Now that you've got an instance and have successfully connected to it, consider the following next steps:

- Install software on the instance.
- Add a block volume. See Adding a Block Volume to a Windows Instance on page 84.
- Add more users to work with Oracle Cloud Infrastructure. See Adding Users on page 62.
- Allow additional users to connect to your instance. See Adding Users on an Instance.
- Or, if you are finished with your instance, delete the resources that you created in the tutorial. See Cleaning Up Resources from the Tutorial on page 86.

Adding a Block Volume to a Windows Instance

Block Volume provides network storage to use with your Oracle Cloud Infrastructure instances. After you create, attach, and mount a volume to your instance, you can use it just as you would a physical hard drive on your computer. A volume can be attached to a single instance at a time, but you can detach it from one instance and attach to another instance, keeping your data intact.

This task shows you how to create a volume, attach it to an instance, and then connect the volume to the instance.

For complete details on Block Volume, see "Managing Volumes" in the Oracle Cloud Infrastructure User Guide.

Creating a Volume

1. Open the navigation menu. Under Core Infrastructure, go to Block Storage and click Block Volumes.
2. Click Create Block Volume.
3. In the **Create Block Volume** dialog box, enter the following:

- **Create in Compartment:** This field defaults to your current compartment. Select the compartment you want to create the volume in, if not already selected.
- **Name:** Enter a user-friendly name. Avoid entering confidential information.
- **availability domain:** Select the same availability domain that you selected for your instance. If you followed the tutorial instructions when launching your instance, this will be the first availability domain in the list. The volume and the instance must be in the same availability domain.
- **Size:** Enter 256 to create a 256 GB block volume.

4. Click **Create Block Volume**.

A 256 GB block volume is displayed in the list in the provisioning state. When the volume is no longer in the provisioning state, you can attach it to your instance.

Attaching the Volume to an Instance

Next you attach the volume via an *iSCSI* network connection to your instance:

1. Find your instance: Open the navigation menu. Under **Core Infrastructure**, go to **Compute** and click **Instances**.
2. Click your instance name to view its details.
3. In the **Resources** section, click **Attached Block Volumes**.
4. Click **Attach Block Volume**.
5. Enter the following:
 - **Block Volume Compartment:** Select the compartment where you created the block volume.
 - **Block Volume:** Select the block volume from the list.
 - **Require CHAP Credentials:** Leave cleared.

 Tip:

 CHAP is a security protocol. You can leave this box cleared for the purposes of the tutorial. When you set up your production environment, Oracle recommends requiring CHAP credentials.

6. Click **Attach**.

Connecting to the Volume

After your volume is attached, you can configure the iSCSI connection. After the connection is configured, you can mount the volume on your instance and use it just as you would a physical hard drive.

To connect to your volume:

1. Log on to your instance as described in Connecting to Your Windows Instance on page 84.
2. Open the navigation menu. Under **Core Infrastructure**, go to **Compute** and click **Instances**.
3. Click your instance name to view the instance details.
4. In the **Resources** section, click **Attached Block Volumes**.
5. Click the Actions icon (three dots) next to the volume you just attached and then click **iSCSI Commands and Information**.

The **iSCSI Commands and Information** dialog box opens. Notice that the dialog box displays specific identifying information about your volume (such as IP address and port) as well as the iSCSI commands that you can use.

6. On your Windows instance, open the iSCSI Initiator.

 For example: Open **Server Manager**, click **Tools**, and select **iSCSI Initiator**.

7. In the iSCSI Initiator Properties dialog box, click the **Discovery** tab.
8. Click **Discover Portal**.
9. Enter the block volume IP address and port. Click OK.
10. Click the Targets tab.
11. In the Discovered Targets region, select the volume IQN.
12. Click Connect and then click OK to close the dialog.
13. You are now ready to format (if needed) and mount the volume. To get a list of mountable iSCSI devices on the instance, in Server Manager, click File and Storage Services and then click Disks.

The 256 GB disk is displayed in the list.

What's Next

Now that you've got an instance running and attached some storage, consider the following next steps:

• Install your own software on the instance.
• Add more users to work with Oracle Cloud Infrastructure. See Adding Users on page 62.
• Or, if you are finished with your instance, delete the resources that you created in the tutorial. See Cleaning Up Resources from the Tutorial on page 86.

Cleaning Up Resources from the Tutorial

After you've finished with the resources you created for this tutorial, clean up by terminating the instance and deleting the resources you don't intend to continue working with.

Detach and Delete the Block Volume
1. Open the navigation menu. Under Core Infrastructure, go to Compute and click Instances.
2. Find your instance in the Instances list and click its name to display its details.
3. In the Resources section on the Instance Details page, click Attached Block Volumes.
4. Find your volume, click the Actions icon (three dots), and then click Detach.
5. Click Continue Detachment and then click OK.
6. When the Console shows the volume status as Detached, you can delete the volume. Open the navigation menu. Under Core Infrastructure, go to Block Storage and click Block Volumes.
7. Find your volume, click the Actions icon (three dots), and then click Terminate. Confirm when prompted.

Terminate the Instance
1. Open the navigation menu. Under Core Infrastructure, go to Compute and click Instances.
2. In the list of instances, find the instance you created in the tutorial.
3. Click the Actions icon (three dots), and then click Terminate.
4. Select the Permanently delete the attached boot volume check box, and then click Terminate Instance.

Delete the Virtual Cloud Network
1. Open the navigation menu. Under Core Infrastructure, go to Networking and click Virtual Cloud Networks.
2. In the list of VCNs, find the one you created in the tutorial.
3. Click the Actions icon (three dots), and then click Terminate.
4. Click Terminate All to delete all the underlying resources of your VCN.

When all the resources are successfully deleted you can close the dialog.
Chapter 14

Getting Started with the Command Line Interface

This chapter provides a hands-on tutorial to using the Command Line Interface (CLI).

Getting Started with the Command Line Interface

This topic provides a walk-through of the commands required to launch a Linux instance and a Windows instance. This tutorial includes working with a compartment, creating a virtual cloud network, and launching instances.

About the Command Line Interface (CLI)

The CLI is a tool that lets you work with most of the available services in Oracle Cloud Infrastructure. The CLI provides the same core functionality as the Console, plus additional commands. The CLI's functionality and command help are based on the service's API.

Getting Help with Commands

You can get inline help using the --help, -h, or -? keywords. For example:

oci --help

oci bv volume -h

oci os bucket create -?

You can also view all the CLI help in your browser.

About the CLI Examples

The examples in this document are grouped as a command and a response, where:

- You are told what the command does, and given the command to use
- The result of the command is returned in a drop-down text box

The next example shows a command and response group.

To get the namespace for your tenancy, run the following command.

oci os ns get

Response

Note:

Understanding Response Output
This response to the `oci os ns get` command shows the standard output, which is returned in JSON format. JSON objects are written as key/value pairs, with the key and value separated by a colon. For example:

```
{
  "data": "docs",
  "id": "ocid1.compartment.oc1..aaaaaaal3gzijdhqo12pqglie6astxxeyqdqeyg35nz5zx112g51k5gc",  "is-stateless": null
}
```

A key like "id" isn't very informative. To understand the JSON object reference you have to read the key's value.

```
{
  "data": "docs"
}
```

Most of the command and response groups in this guide aren't as simple as the preceding example. However, as you work through the tasks, they are easier to read and work with.

Before You Begin

Before you start using the command line interface, verify that you meet all the requirements described in "Command Line Interface (CLI)" in the Oracle Cloud Infrastructure User Guide.

As a best practice, complete the tasks in this tutorial in a test environment. This approach ensures that your configurations do not affect other environments in the tenancy. At the end of the tutorial, you can safely delete the test resources.

Working in a Compartment

In this tutorial, you use one compartment for all your resources. When you are ready to create a production environment, you will most likely separate these resources in different compartments.

You can either use an existing compartment (recommended), or create a new compartment.

Choose a Compartment

Help: `oci iam compartment list -h`

To list the compartments in your tenancy, run the following command.

```
oci iam compartment list -c <tenancy_id>
```

Command Example and Response

```
oci iam compartment list -c
ocid1.tenancy.oc1..aaaaaaal1fvgn0h9njj15u61drwb416aay2x87qatw2wte30f7141a19oom
```

```
{
  "data": [  
    {  
      "compartment-id": "ocid1.tenancy.oc1..aaaaaaal1fvgn0h9njj15u61drwb416aay2x87qatw2wte30f7141a19oom",  
      "description": "For testing CLI features",  
      "id":  
      "ocid1.tenancy.oc1..aaaaaaal1fvgn0h9njj15u61drwb416aay2x87qatw2wte30f7141a19oom",  
      "inactive-status": null,  
      "lifecycle-state": "ACTIVE",  
      "name": "CLIsandbox,"  
    }
  ]
}
```
Create a Compartment

Help: oci iam compartment create -h

Before you create a compartment, review “Working with Compartments” in the Oracle Cloud Infrastructure User Guide to understand compartment design, resource management, and compartment constraints.

To create a compartment, run the following command.

```
oci iam compartment create --name <compartment_name> -c <root_compartment_id> --description "<friendly_description>"
```

Caution:

Avoid entering confidential information when providing resource names or descriptions for any of the CLI commands.

Command Example and Response

```
oci iam compartment create --name CLISandbox -c ocid1.tenancy.oc1..aaaaaaaal1fvgn0h9njji5u61drwb416aay2x87qatw2wte30f714al19oom --description "For testing CLI features"
```

```json
{
  "data": {
    "compartment-id": "ocid1.tenancy.oc1..aaaaaaaal1fvgn0h9njji5u61drwb416aay2x87qatw2wte30f714al19oom",
    "description": "for testing",
    "id": "ocid1.compartment.oc1..aaaaaaaasqn3hj6e5tq6slj4rdqqja7qsyuqipmu5ucmyps3rkmrhu2g",
    "inactive-status": "null",
    "lifecycle-state": "ACTIVE",
    "name": "CLISandbox",
    "time-created": "2017-05-12T21:31:27.709000+00:00"
  },
  "etag": "24a4737ede9d34ee9349c93e9549ee684a15efc8"
}
```
Tip:

Keep track of the information that's returned when you run commands. In several cases, you need this information as you work through this document. For example, the preceding command returns the OCID for the tenancy, which is also the root compartment.

"compartment-id":
"ocid1.tenancy.oc1..aaaaaaaawuu4tdkysd2ups5fsc1gm5ksfjwmx6mwem5sbjyw5ob5c"

Creating a Virtual Cloud Network

Before you can launch any instances, you have to create a virtual cloud network (VCN) and related resources. The following tasks are used to prepare the network environment:

1. Create the Virtual Cloud Network

Help: oci network vcn create -h

Create the VCN, specifying a DNS name and a CIDR block range.

To create the VCN, run the following command.

```
oci network vcn create --compartment-id <compartment_id> --display-name "<friendly_name>" --dns-label <dns_name> --cidr-block "<0.0.0.0/0>"
```

Command Example and Response

```
oci network vcn create --compartment-id ocid1.compartment.oc1..aaaaaaaalkqnr7pfd92rdrwo5f6fcoufoih1vd4ls4j9jjpge16vyxrc11 --display-name "cli_vcn" --dns-label sandboxvcn1 --cidr-block "10.0.0.0/16"
```

```
{
    "data": {
        "cidr-block": "10.0.0.0/16",
        "compartment-id": "ocid1.compartment.oc1..aaaaaaaalkqnr7pfd92rdrwo5f6fcoufoih1vd4ls4j9jjpge16vyxrc11",
        "default-dhcp-options-id": "ocid1.dhcpoptions.oc1.phx.aaaaaaaaexnsdwsjmxnmnt4tpzkcbeyengrnfpgnqzlkkzz7qfx6faeqfbi6",
        "default-route-table-id": "ocid1.routetable.oc1.phx.aaaaaaaagdjre4rmk5dq6gqkftjtztyn7vctemqga3i6qrxvf23stedpuojq",
        "default-security-list-id": "ocid1.securitylist.oc1.phx.aaaaaaaaaxa3cr5zqshmed7zf64bxcrxb2zerinxhc52zrge5w27hrua7",
        "display-name": "cli_vcn",
        "dns-label": "sandboxvcn1",
        "id": "ocid1.vcn.oc1.phx.aaaaaaaa6va8fxmlnhvzjk3nzo8x290qymdrwiblxw5qpz1m6rdd74vchr",
        "lifecycle-state": "AVAILABLE",
        "time-created": "2017-06-27T22:14:15.683000+00:00",
        "vcn-domain-name": "sandboxvcn1.oraclevcn.com"
    },
    "etag": "9037efc5"
```
You can get information about any of your configurations by sending queries to your tenancy.

For example, to get network information, run the following command.

```bash
oci network vcn list -c <compartment_id>
```

Command Example and Response

```bash
oci network vcn list -c
ocid1.compartment.oc1..aaaaaaaalkqnr7pf92rdrwo5fm6fcoufoih1vd4ls4j9jjpge16vfyxrcl1
```

```json
{
  "data": [
    {
      "cidr-block": "10.0.0.0/16",
      "compartment-id": "ocid1.compartment.oc1..aaaaaaaalkqnr7pf92rdrwo5fm6fcoufoih1vd4ls4j9jjpge16vfyxrcl1",
      "default-dhcp-options-id": "ocid1.dhcoption.oc1.phx.aaaaaaaaexnsdjmxncbydrwrfwpgnqzlkkk7qfmmnt4tpzkx6faeqfb",
      "default-route-table-id": "ocid1.route-table.oc1.phx.aaaaaaaagdjre4jtzy7vctmqqga316qrzf2rmk5dqdrwqkft3stedpujo",
      "default-security-list-id": "ocid1.security-list.oc1.phx.aaaaaaaaxcr5zqsdrwxb2zerinxc52zrge5wmed74bxczf27hru7",
      "display-name": "cli_vcn",
      "dns-label": "sandboxvcn1",
      "id": "ocid1.vcn.oc1.phx.aaaaaaaa6fa8f3xl1m4hvzjk3no8x29qqymdrwib1xw5qplm64rdd7vchr",
      "lifecycle-state": "AVAILABLE",
      "time-created": "2017-06-27T22:14:15.683000+00:00",
      "vcn-domain-name": "sandboxvcn1.oraclevcn.com"
    }
  ]
}
```

2. Configure a Security List Ingress Rule

Help: `oci network security-list create -h`

When you create a VCN, a default security list is created for you. However, the Windows instance also requires inbound traffic enabled for port 3389. The preferred approach is creating a second list that addresses the Windows port requirement. You use the `--security-list-ids` option to associate both security lists with the subnet when you create it.

Note:

Passing JSON Strings in the CLI

The next command passes complex input as a JSON text string. For help with formatting JSON input, especially when working in a Windows environment, see "Passing Complex Input" in the [Oracle Cloud Infrastructure User Guide](#).

To create a new security list and configure the ingress rule for port 3389, run the following command.

```bash
oci network security-list create -c <compartment_id> --egress-security-rules "[{"destination": ":0.0.0.0/0", "protocol": ":6", "isStateless": true}, {"tcpOptions": {"destinationPortRange": [null], "sourcePortRange": [null]}}]" --ingress-security-rules "[{"source": ":0.0.0.0/0", "protocol": ":6", "isStateless": false}, {"tcpOptions": {"destinationPortRange": [3389], "min": 3389},
```

Oracle Cloud Infrastructure Getting Started Guide 92
Command Example and Response

oci network security-list create --compartment-id ocid1.compartment.oc1..aaaaaaaalkqr7pfd92rdrwo5fm6fcoufoih1vd4ls4j9jjpgel16vfyxrc1l
--egress-security-rules "[{"destination": "0.0.0.0/0", "protocol": "6", "isStateless": true, "tcpOptions": {"destinationPortRange": null, "sourcePortRange": null}]}
--ingress-security-rules "[{"source": "0.0.0.0/0", "protocol": "6", "isStateless": false, "tcpOptions": {"destinationPortRange": {"max": 3389, "min": 3389}, "sourcePortRange": null}]}
--vcn-id ocid1.vcn.oc1.phx.aaaaaaaa6va8f4xrlmrhvzjk3nzo8x290qymdrwiblxw5qplm64rdd74vchr
--display-name port3389rule

{
 "data": {
 "compartment-id": "ocid1.compartment.oc1..aaaaaaaalkqr7pfd92rdrwo5fm6fcoufoih1vd4ls4j9jjpgel16vfyxrc1l",
 "display-name": "port3389rule",
 "egress-security-rules": [
 {
 "destination": "0.0.0.0/0",
 "icmp-options": null,
 "is-stateless": true,
 "protocol": "6",
 "tcp-options": {
 "destination-port-range": {
 "max": null,
 "min": null
 },
 "source-port-range": null
 },
 "udp-options": null
 }
],
 "id": "ocid1.securitylist.oc1.phx.aaaaaaaa7snx4jjfons6o2h33drwdh5hev66elir55hnrr5hvqfnd5rc1l",
 "ingress-security-rules": [
 {
 "icmp-options": null,
 "is-stateless": false,
 "protocol": "6",
 "source": "0.0.0.0/0",
 "tcp-options": {
 "destination-port-range": {
 "max": 3389,
 "min": 3389
 },
 "source-port-range": null
 },
 "udp-options": null
 }
],
 "lifecycle-state": "AVAILABLE",
 "time-created": "2017-08-23T19:50:58.104000+00:00",
 "vcn-id": "ocid1.vcn.oc1.phx.aaaaaaaa6va8f4xrlmrhvzjk3nzo8x290qymdrwiblxw5qplm64rdd74vchr",
 "etag": "d063779e"
 }
}
3. Create a Subnet

Help: `oci iam availability-domain list -h, oci network subnet create -h`

In this next step, you have to provide the OCIDs for the default security list and the new security list. If you didn’t record these OCIDs, use the `oci network security-list list` command to get a list of the security lists in the virtual cloud network.

Before you create a subnet, you have to find out which availability domains are available to create the subnet in.

To get the availability domain list for your compartment, run the following command.

```
oci iam availability-domain list -c <compartment_id>
```

Command Example and Response

```
oci iam availability-domain list -c
ocid1.compartment.oc1..aaaaaaaalkqnr7pfd92rdrwo5fm6fcoufoihlv4ls4j9jjpgel16vfyxrc1l

{
  "data": [
    {
      "compartment-id": "ocid1.compartment.oc1..aaaaaaaalkqnr7pfd92rdrwo5fm6fcoufoihlv4ls4j9jjpgel16vfyxrc1l",
      "name": "EMIr:PHX-AD-1"
    },
    {
      "compartment-id": "ocid1.compartment.oc1..aaaaaaaalkqnr7pfd92rdrwo5fm6fcoufoihlv4ls4j9jjpgel16vfyxrc1l",
      "name": "EMIr:PHX-AD-2"
    },
    {
      "compartment-id": "ocid1.compartment.oc1..aaaaaaaalkqnr7pfd92rdrwo5fm6fcoufoihlv4ls4j9jjpgel16vfyxrc1l",
      "name": "EMIr:PHX-AD-3"
    }
  ]
}
```

To create a subnet in AD-1, run the following command.

```
oci network subnet create --vcn-id <vcn_id> -c <compartment_id> --availability-domain "<availability_domain_name>" --display-name <display_name> --dns-label "<dns_label>" --cidr-block "<10.0.0.0/16>" --security-list-ids ["<default_security_list_id>","<new_security_list_id>"]
```

Command Example and Response

```
oci network subnet create --vcn-id ocid1.vcn.oc1.phx.aaaaaaaah2ast7desae6ok3amu64wozj3kskox75awyr5j2nd7tkocplajq -c ocid1.compartment.oc1..aaaaaaaalkqnr7pfd92rdrwo5fm6fcoufoihlv4ls4j9jjpgel16vfyxrc1l --availability-domain "EMIr:PHX-AD-1" --display-name CLISUB --dns-label "vminstances" --cidr-block "10.0.0.0/16" --security-list-ids ["ocid1.securitylist.oc1.phx.aaaaaaaaw7c62ybv4f5drwv2mup3f75aiquhbkbh4s676muq5t7j5t"

{
  "data": {
    "availability-domain": "EMIr:PHX-AD-1",
    "cidr-block": "10.0.0.0/16",
    }```
4. Create an Internet Gateway

**Help:** `oci network internet-gateway create -h`

To create an Internet Gateway, run the following command.

```
oci network internet-gateway create -c <compartment_id> --is-enabled <true> --vcn-id <vcn_id> --display-name <gateway_display_name>
```

**Command Example and Response**

```
oci network internet-gateway create -c
ocid1.compartment.oc1..aaaaaaaaalkqnr7pfd92drw05fm6fcooufoihlvd4ls4j9jppge16vfyxrcll
--is-enabled true --vcn-id
ocid1.vcn.oc1.phx.aaaaaaa6va8fxml4hvzvk3nzo8x290qymdrwiblxw5qpzl1m64rrd74vchr
--display-name sbgateway
```

```
{
 "data": {
 "compartment-id": "ocid1.compartment.oc1..aaaaaaaaalkqnr7pfd92drw05fm6fcooufoihlvd4ls4j9jppge16vfyxrcll",
 "display-name": "sbgateway",
 "id": "ocid1.internetgateway.oc1.phx.aaaaaaa6va8fxml4hvzvk3nzo8x290qymdrwiblxw5qpzl1m64rrd74vchr",
 "is-enabled": true,
 "lifecycle-state": "AVAILABLE",
 "time-created": "2017-08-25T20:03:48.482000+00:00",
 "vcn-id": "ocid1.vcn.oc1.phx.aaaaaaa6va8fxml4hvzvk3nzo8x290qymdrwiblxw5qpzl1m64rrd74vchr"
 },
 "etag": "d13fb7e3"
}
```
5. Add a Rule to the Route Table

Help: `oci network route-table list -h`. `oci network route-table update -h`.

When you create a VCN, a route table is created automatically. Before you add a rule to the route table, you need the OCID for the table.

To get the route table OCID, run the following command.

```
oci network route-table list -c <compartment_id> --vcn-id <vcn_id>
```

**Command Example and Response**

```
oci network route-table list -c
ocid1.compartment.oc1..aaaaaakqnr7pf92rdrwo5fm6fcofoih1vd4ls4j9jjjgel16vfyxrc1l
--vcn-id
ocid1.vcn.oc1.phx.aaaaaaaa6va8fxr1m4hvzjk3nzo8x290qymdrwiblxw5qpzl64rdd74vchr
```

```
{
 "data": [
 {
 "compartment-id": "ocid1.compartment.oc1..aaaaaakqnr7pf92rdrwo5fm6fcofoih1vd4ls4j9jjjgel16vfyxrc1l",
 "display-name": "Default Route Table for cli_vcn",
 "id": "ocid1.routetable.oc1.phx.aaaaaaaaagdjqgga3i6qrxf23stoptprechk6l64qdfwykftjtzyn7vctmujo2",
 "lifecycle-state": "AVAILABLE",
 "route-rules": [],
 "time-created": "2017-08-25T21:46:04.324000+00:00",
 "vcn-id": "ocid1.vcn.oc1.phx.aaaaaaaa6va8fxr1m4hvzjk3nzo8x290qymdrwiblxw5qpzl64rdd74vchr"
 }
]
}
```

The information in the previous response shows that there is a route table without any rules: "route rules": 

```

Because the table exists, you create a rule by updating the table. When you run the next command, you get a warning about updates to route rules. Any update to the route rules replaces all the existing rules. If you want to continue and process the update, Enter "y".

To update the route rules, run the following command.

```
oci network route-table update --rt-id <route_table_id> --route-rules
"["cidrBlock":"<0.0.0.0/0>","networkEntityId":"
"internet_gateway_id")"]
```

Command Example and Response

```
oci network route-table update --rt-id
ocid1.routetable.oc1.phx.aaaaaaaaagdjqgga3i6qrxf23stoptprechk6l64qdfwykftjtzyn7vctmujo2
--route-rules
"["cidrBlock":"0.0.0.0/0","networkEntityId":"
ocid1.internetgateway.oc1.phx.aaaaaaaa"
"internet_gateway_id")"
```

```
WARNING: Updates to route-rules will replace any existing values. Are you sure you want to continue? [y/N]: y
```

```
{
  "data": {
    "compartment-id": "ocid1.compartment.oc1..aaaaaakqnr7pf92rdrwo5fm6fcofoih1vd4ls4j9jjjgel16vfyxrc1l",
    "display-name": "Default Route Table for cli_vcn",
```

Oracle Cloud Infrastructure Getting Started Guide 96
When you launch an instance you have to provide the following information, some of which you’ve already obtained:

• compartment-id
• availability-domain
• subnet-id
• image-id
• shape

1. Get Information About the Available Images

Help: oci compute image list -h

The image-id identifies the operating system that you want to install. For more information, see “Oracle-Provided Images” in the Oracle Cloud Infrastructure User Guide.

To get a list of images, run the following command.

```
oci compute image list -c <compartment_id>
```

Command Example and Response

Images are available for: Oracle Linux, CentOS, Ubuntu, and Windows Server. This response example only shows the information for Oracle Linux 7.3.

```
oci compute image list -c
```

```
oci compute image list -c
oci1.compartment.oc1..aaaaaaaalkqnr7pfd9rdrwo5fm6fcoufoih1vd4ls4j9jjpge16vfxyrcll
```

```
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
2. Get Information About the Available Shapes

Help: oci compute shape list -h

The shape identifies the configuration of the virtual machine or bare metal host that you want to use. “Overview of the Compute Service” in the Oracle Cloud Infrastructure User Guide contains up-to-date information about the available shapes.

For the purposes of this walk-through, use this virtual machine shape for testing: --shape "VM.Standard1.1". This shape is configured with 1 CPU and 7 GB of memory.

<table>
<thead>
<tr>
<th>Note:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape and Block Volume Sizing</td>
</tr>
</tbody>
</table>
Sizing for compute instance shapes and block volumes are not part of this walk-through. The examples use the minimum sizes that are available.

To get a list of all the available bare metal and virtual machine shapes, run the following command.

```
oci compute shape list -c <compartment_id> --availability-domain "<availability_domain_name>"
```

**Command Example and Response**

```
oci compute shape list -c
ocid1.compartment.oc1..aaaaaaalkqnr7pfd92rdrwo5fm6fcoufoih1vd4ls4j9jjpgel6vfyxrc1l
--availability-domain "EMIr:PHX-AD-1"
```

```json
{
 "data": [
 {
 "shape": "BM.Standard1.36"
 },
 {
 "shape": "VM.Standard1.1"
 },
 {
 "shape": "VM.Standard1.2"
 },
 {
 "shape": "VM.Standard1.4"
 },
 {
 "shape": "VM.Standard1.8"
 },
 {
 "shape": "VM.Standard1.16"
 },
 {
 "shape": "VM.DenseIO1.4"
 }
]
}
```

**Launching a Linux Instance**

Now you're ready to launch a Linux instance based on the configurations you prepared.

1. Use a Public/Private Key Pair to Connect to the Instance

When you launch an instance using the CLI, you need an existing key pair to access the instance. (This key pair is not the same as an API signing key.)
2. Launch the Instance

**Help:** `oci compute instance launch -h`

**Caution:**

In this example, the `--ssh-authorized-keys-file` parameter references a file that contains the public key required to access the compute instance. If you don't provide this key when you launch the instance you can't connect to it after it's launched.

To launch the Linux instance, run the following command.

```bash
oci compute instance launch --availability-domain "<availability_domain_name>" -c <compartment_id> --shape "<shape_name>"
--display-name "<instance_display_name>" --image-id <image_id> --ssh-authorized-keys-file "<path_to_authorized_keys_file>" --subnet-id <subnet_id>
```

**Command Example and Response**

```bash
oci compute instance launch --availability-domain "EMIr:PHX-AD-1" -c ocid1.compartment.oc1..aaaaaaaalkqnr7pf9d2rdw05fm6fcooufih1vd4ls4j9jjpge16vfxyrc11 --shape "VM.Standard1.1" -c-display-name "Linux Instance" --image-id ocid1.image.oc1.phx.aaaaaaaa5yu6pw3riqtuhxzo07fdngi4tstegaman5aq3nyxu3hxcolm0a --ssh-authorized-keys-file "C:\Users\testuser\.oci\linux_key.pem" --subnet-id ocid1.subnet.oc1.phx.aaaaaaaaahvx05fhw7p320cxmdw05wlf5fegig9cmdzsl1blx16c5wvb5s2
```

```json
{
 "data": {
 "availability-domain": "EMIr:PHX-AD-1",
 "compartment-id": "ocid1.compartment.oc1..aaaaaaaalkqnr7pf9d2rdw05fm6fcooufih1vd4ls4j9jjpge16vfxyrc11",
 "display-name": "Linux Instance",
 "extended-metadata": {},
 "id": "ocid1.instance.oc1.phx.abyhqljrtv7hhenrra6hsdrwqvszcr2gs7c76tuuzc33iy16bz5mfhnzw7q",
 "image-id": "ocid1.image.oc1.phx.aaaaaaaa5yu6pw3riqtuhxzo07fdngi4tstegaman5aq3nyxu3hxcolm0a",
 "ipxe-script": null,
 "lifecycle-state": "RUNNING",
 "metadata": {
 "sshAuthorizedKeys": "ssh-rsa AAAAB3NzaABJQAAAAC1yc2EAAAADAQABAAABAQ
kuQotmH4yf1tpqjvOBzoTkwoYaBuoVcY4VP1GkuCEUrpoj25F6LybbYeO
+1pxucP8T2zVFZfUVzqg7u8CtCjihZ9qH92or0cXBJCyKxRvE2kkP4Rnns38MvuDnySyus/04V817sEudq+
+5c4vJf5bEncs8o5q1AoIn1WJy5xfQHISL2EjgS5q1JKoO2Mc64Ku/6qEwe01htPGo10zFmPoWstfgc1UqTdiRsYECzz
1gBf05v/Dcg19ND7/91lUac12bm+Hf2oR0gY4C2MvL3Q== rsa-key-20817080\n"
 },
 "region": "phx",
 "shape": "VM.Standard1.1",
 "time-created": "2017-08-26T20:39:03.340000+00:00"
 },
 "etag": "2df9d1f14856a2e9a0cc239417f1ee829288b8badeb7ac6fb6d5b3553cbd148c--gzip"
}
```
3. Get VNIC Information for the Instance

   Help: `oci compute instance list-vnics -h`

   You need the public IP address of the instance in order to connect to the instance. The VNIC for the instance has this information.

   To get a list of VNICs for the instance, run the following command.

   ```
 oci compute instance list-vnics --instance-id <instance_id>
   ```

   Command Example and Response

   ```
 oci compute instance list-vnics --instance-id
 ocid1.instance.oc1.phx.abcdefgh6kykdowc8ozzvr4421kwp7apdrwk6wrj17su82d60c6sp4nap88d

 {
 "data": [
 {
 "availability-domain": "EMIr:PHX-AD-1",
 "compartment-id": "ocid1.compartment.oc1..aaaaaaaalkqnr7pfd92rdrwo5fm6fcoufoih1vd4ls4j9jjpgge16vyxrc11",
 "display-name": "Linux Instance",
 "hostname-label": null,
 "id": "ocid1.vnic.oc1.phx.abyhqljrxrwx74nly7dp7ctr7xvclvejc7pu5rq77e37vlsq2a15y74a",
 "lifecycle-state": "AVAILABLE",
 "private-ip": "10.0.0.2",
 "public-ip": "129.145.32.236",
 "subnet-id": "ocid1.subnet.oc1.phx.aaaaaaaahvx05fhw7p320cxdmrwo5wl50egig9cmdzs1plb1x165wv5s2",
 "time-created": "2017-08-24T00:51:30.462000+00:00"
 }
]
 }
   ```

4. Create a Block Volume for the Instance

   Help: `oci bv volume create -h`

   Create a block volume, using the minimum available size.

<table>
<thead>
<tr>
<th>Caution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block volume sizes are expressed as increments of 1024 MB. The next command example uses the minimum size, <code>--size-in-mbs 51200</code>, or 50 GB.</td>
</tr>
</tbody>
</table>

   To create a block volume, run the following command.

   ```
 oci bv volume create --availability-domain "<availability_domain_name>"
 -c <compartment_id> --size-in-mbs <51200> --display-name <volume_display_name>
   ```

   Command Example and Response

   ```
 oci bv volume create --availability-domain "EMIr:PHX-AD-1" -c
 ocid1.compartment.oc1..aaaaaaaalkqnr7pfd92rdrwo5fm6fcoufoih1vd4ls4j9jjpgge16vyxrc11
 --size-in-mbs 51200 --display-name LinuxVol

 {
 "data": {
 "availability-domain": "EMIr:PHX-AD-1",
   ```
After the lifecycle state changes from "PROVISIONING" to "AVAILABLE" you can attach the volume to the Linux instance.

**Tip:**

Finding out the Lifecycle State

You can find out the lifecycle state for the block volume using the `oci bv volume get` command for the volume you created. You can also query other resources such as compute instances and VNICs, to find out their lifecycle state.

### 5. Attach the Block Volume to the Instance

**Help:** `oci compute volume-attachment attach -h`

To attach the block volume to the Linux instance, run the following command.

```
oci compute volume-attachment attach --instance-id <instance_id> --type iscsi --volume-id <volume_id>
```

**Command Example and Response**

```
oci compute volume-attachment attach --instance-id ocid1.instance.oc1.phx.abcdefgh6kykdowc8ozzvr4421kwp7apdrwk6wrjl7su82d60c6sp4nap88d --type iscsi --volume-id ocid1.volume.oc1.phx.abhyqljrgbktp2ec7pda14y324drw51xruh5nxt25gqq7znsj5oo4snvcta
```

```json
{
 "data": {
 "attachment-type": "iscsi",
 "availability-domain": "EMIr:PHX-AD-1",
 "chap-secret": null,
 "chap-username": null,
 "compartment-id": "ocid1.compartment.oc1..aaaaaalqkgr7pf92rdwo5fm6fcoufoih1vd4ls4j9jjpge16vfyrclli",
 "display-name": null,
 "id": "ocid1.volumeattachment.oc1.phx.abyhqljrgbktp2ec7pda14y324drw51xruh5nxt25gqq7znsj5oo4snvcta",
 "instance-id": "ocid1.instance.oc1.phx.abcd6fgh6kykdowc8oazzvr4421kwp7apdrwk6wrjl7su82d60c6sp4nap88d",
 "ipv4": null,
 "iqn": null,
 "lifecycle-state": "ATTACHING",
 "port": null,
 "time-created": "2017-08-26T00:55:30.462000+00:00",
 "volume-id": "ocid1.volume.oc1.phx.fewtr0p6pm91j7h7ra8f38w3drw1f4x9tadrw1sbs7n5qxx7dcu7b",
 "etag": "0c0afdb14a0a10ffcc15283366798ac82f623433e6f5619eb2d4469612b32a332"
 }
```
Getting Started with the Command Line Interface

Launching a Windows Instance

Launching a Windows instance follows the same pattern and requires the same information as launching a Linux instance. The only significant differences are the operating system and shape, as shown in the following commands.

1. Launch the Instance

   Help: `oci compute instance launch -h`

   To launch the Windows instance, run the following command.

   ```
 oci compute instance launch --availability-domain
 "<availability_domain_name>" -c <compartment_id> --shape "<shape_name>"
 --display-name "<instance_display_name>" --image-id <image_id> --subnet-id <subnet_id>
   ```

   **Command Example and Response**

   ```
 oci compute instance launch --availability-domain "EMIr:PHX-AD-1" -c
 ocid1.compartment.oc1..aaaaaaaalkqnr7pfd92drwo5fm6fcoufoihlv4s4j9jjpgel6vfxrc1l
 --shape "VM.Standard1.2" --display-name "Windows Instance" --image-id
 ocid1.image.oc1.phx.aaaaaaaa53cliaskafmbr02y4ywjebc15szc42e2b7ua
 --subnet-id
 ocid1.subnet.oc1.phx.aaaaaaaaaypsr25bzmj3drwiha6lodzus3yn6xwgcrgxxgafsceirbhj5bpa
   ```

2. Get VNIC Information for the Instance

   To get the VNIC information, run the following command.

   ```
 oci compute instance list-vnics --instance-id <instance_id>
   ```

3. Create a Block Volume for the Instance

   To create a block volume, run the following command.

   ```
 oci bv volume create --availability-domain "<availability_domain_name>" -c
 <compartment_id> --size-in-mbs 51200 --display-name <display_name>
   ```
4. Attach the Block Volume to the Instance

To attach the Block Volume to the Windows instance, run the following command.

```
oci compute volume-attachment attach --instance-id <instance_id> --type <iscsi> --volume-id <volume_id>
```

Connecting to Your Instances

Although the Public IP address is required for connecting to Linux and Windows instances, that is the only thing the two have in common. Some of these differences include: authentication, port configuration, and desktop client programs.

1. Connect to Your Linux Instance

   Connecting to Your Instance describes how to connect to a Linux instance from a Unix-style or Windows-style system.

2. Connect to Your Windows Instance

   Help: `oci compute instance list-vnics -h` and `oci compute instance get-windows-initial-creds -h`

   To connect to the instance using Remote Desktop Client (RDC), you need:
   - The public IP address for the instance
   - The initial Windows credentials

   To get the public IP address of the Windows instance, run the following command.

```
oci compute instance list-vnics --instance-id <instance_id>
```

Command Example and Response

```
oci compute instance list-vnics --instance-id
ocid1.instance.oc1.phx.zsutzirph7cbrbx6rzu91stavdrw58puq3iskn1rl07zfcd6rq6p9
```

```
{
 "data": [
 {
 "availability-domain": "EMIr:PHX-AD-1",
 "compartment-id": "ocid1.compartment.oc1..aaaaaaaalkqnr7pfd92rdrwo5fm6fcoufoih1vd4ls4j9jwpge16vfyxrc11",
 "display-name": "Windows Instance",
 "hostname-label": null,
 "id": "ocid1.vnic.oc1.phx.abyhqljr5m5mmra3ecxasw6vdrwq5ft23dqn4dr145hdggz6rgfdwpp4iija",
 "lifecycle-state": "AVAILABLE",
 "private-ip": "10.10.0.3",
 "public-ip": "129.142.0.212",
 "subnet-id": "ocid1.subnet.oc1.phx.aaaaaaaahvx05fhw7p32ocxmdrwo5w1f50egig9cmdzs1plb1x16c5wvb5s2",
 "time-created": "2017-08-26T00:51:30.462000+00:00"
 }
]
}
```
Getting Started with the Command Line Interface

To get the initial Windows credentials, run the following command.

```
oci compute instance get-windows-initial-creds --instance-id <instance_id>
```

**Command Example and Response**

```
oci compute instance get-windows-initial-creds --instance-id ocid1.instance.oc1.phx.zsutzirph7cbrbx6rzu91stavdrw58puq3isknlr07zfcd6rq6p9
```

```
{
 "data": {
 "password": "Cz{73~~vf@dnK7A",
 "username": "opc"
 }
}
```

**Connecting to Your Windows Instance** describes how to connect to your instance using RDC.

Cleaning Up the Test Environment

When you've finished setting up the test environments described in this tutorial, clean up the test environment by removing resources you aren't using.

**Detach and Delete the Block Volumes**

Help: oci compute volume-attachment list -h, oci compute volume-attachment detach -h and oci bv volume delete -h

Removing a block volume from an instance is a 3-step process. Use the following steps to detach and delete the block volume for the Linux instance.

1. **Get the volume-attachment-id**
   
The volume attachment ID is created when you create a block volume.
   
To get the volume attachment ID, run the following command.

```
oci compute volume-attachment list -c <compartment_id>
```

**Command Example and Response**

```
oci compute volume-attachment list -c ocid1.compartment.oc1..aaaaaaaalkqnr7pfd92rdrwo5fm6fcoufoih1vd4ls4j9jjpge16vfyxrc11
```

```
{
 "data": [
 {
 "attachment-type": "iscsi",
 "availability-domain": "EMIr:PHX-AD-1",
 "chap-secret": null,
 "chap-username": null,
 "compartment-id": "ocid1.compartment.oc1..aaaaaaaalkqnr7pfd92rdrwo5fm6fcoufoih1vd4ls4j9jjpge16vfyxrc11",
 "display-name": null,
 "id": "ocid1.volumeattachment.oc1.phx.abyhlytoivg6eaybdrwb7mqqms6utjrefofrplyip7fif3vtpk",
 "instance-id": "ocid1.instance.oc1.phx.abcdfegh6kykdowc8ozzvr4421kwp7apdrwk6wrj17su82d60c6sp4nap88d"
 }
]
}```
2. Detach the volume-attachment-id

To detach the volume attachment-id, run the following command.

```bash
oci compute volume-attachment detach --volume-attachment-id <volume_attachment_id>
```

Command Example and Response

```bash
oci compute volume-attachment detach --volume-attachment-id ocid1.volumeattachment.oc1.phx.abyhqljroo2cbwchrpa3ati77gfgjvba7y6dc7imnleskq4bdljroo2cbwchrrebuprxddvca --force
```

Are you sure you want to delete this resource? [y/N]:

All destructive actions, such as detaching and deleting resources allow you to use the `--force` parameter, and the resource is removed without requiring confirmation. As a best practice, use the y/N option instead of `--force`.

Confirm the deletion. No response is returned after the resource is deleted.

3. Delete the Block Volume

To delete the block volume, run the following command.

```bash
oci bv volume delete --volume-id <volume_id> --force
```

Command Example and Response

a. ```bash
oci bv volume delete --volume-id
ocid1.volume.oicl.phx.abyhqljroo2cbwchrpa3ati77gfgjvba7y6dc7imnleskq4bdljroo2cbwchrrebuprxxdvc
--force
```

There is no response to this action. To verify that the block volume was deleted, run the following command.

```bash
oci bv volume list -c <compartment_id>
```

The response to this query returns "lifecycle-state": "TERMINATED", showing that the volume doesn't exist.

To delete the block volume attached to the Windows instance, use the preceding steps (1-3) as a guide.

**Terminate the Instances**

Help: `oci compute instance terminate -h`

To delete the Linux instance, run the following command.

```bash
oci compute instance terminate --instance-id <instance_id>
```
**Deleting an Instance**

To delete a Windows instance, run the following command:

```
oci compute instance terminate --instance-id <instance_id>
```

**Delete the Virtual Cloud Network**

Help:

```
oci network subnet delete -h, oci network vcn delete -h
```

It takes the following 2 steps to delete the VCN.

1. **Delete the subnet**
   
   To delete the subnet, run the following command.
   
   ```
 oci network subnet delete --subnet-id <subnet_id> --force
   ```

   **Command Example and Response**

   ```
 oci network subnet delete --subnet-id
 ocid1.subnet.oc1.phx.aaaaaaaahvx05fhw7p320cxmdrwo5wlf50egig9cmdzs1plb1x16c5wvb5s2
 --force

 None
   ```

   2. **Delete the virtual cloud network**

   To delete the VCN, run the following command.
   
   ```
 oci network vcn delete --vcn-id <vcn_id> --force
   ```

   **Command Example and Response**

   ```
 oci network vcn delete --vcn-id
 ocid1.vcn.oc1.phx.aaaaaaaa6va8fzx1m4hvzjk3nzo8x290qymdrwiblxw5qz1m64rdd74vchr
 --force

 None
   ```
Chapter 15

Getting Started with the Terraform Provider

This topic provides instructions for downloading and installing both Terraform and the Oracle Cloud Infrastructure Terraform provider, and provides a brief introduction to the key concepts for understanding and using the Oracle Cloud Infrastructure Terraform provider.

Terraform Overview

Terraform is "infrastructure-as-code" software that allows you to define your infrastructure resources in files that you can persist, version, and share. These files describe the steps required to provision your infrastructure and maintain its desired state; it then executes these steps and builds out the described infrastructure.

Terraform’s configuration and execution building blocks are modules, which are self-contained configuration packages. You can use these modules to organize your code and to create reusable components. HashiCorp, the developer of Terraform, provides a library of open-source Terraform modules “out of the box” to support many common tasks.

To use Terraform for Oracle Cloud Infrastructure, you must download two components - Terraform from HashiCorp, and then the Oracle Cloud Infrastructure Terraform provider.

Download and Install Terraform

Download Terraform from the HashiCorp download page. Ensure that you download the correct binary file for your system.

<table>
<thead>
<tr>
<th>Important:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Oracle Cloud Infrastructure Terraform provider version 2.2.0 and greater requires Terraform version 0.10.1 or greater.</td>
</tr>
</tbody>
</table>

Download the Oracle Cloud Infrastructure Terraform Provider

**Prerequisites for Installing and Using the Terraform Provider**

- An Oracle Cloud Infrastructure account that has user credentials sufficient to execute a Terraform plan.
- A user in that account.
- Required keys and Oracle Cloud Infrastructure IDs (OCIDs). For guidance, see "Required Keys and OCIDs" in the Oracle Cloud Infrastructure User Guide.
- The correct Terraform binary file for your operating system (version 0.10.1 or greater).

**Installing and Configuring the Terraform Provider**

- For guidance on installing or on upgrading a previous version of the Oracle Cloud Infrastructure Terraform provider, see Terraform Provider Version 3.
For guidance on setting up the Terraform provider, see `docs.cloud.oracle.com` or `terraform.io`.

## Installing Terraform and the Terraform Provider with Yum

If you're running Oracle Linux 7, you can use `yum` to install Terraform and the Terraform provider.

To use `yum` to install Terraform:

```
sudo yum install terraform
```

To use `yum` to install the Terraform provider:

```
sudo yum install terraform-provider-oci
```

## For More Information

- GitHub
- Hashicorp Terraform Documentation
- Creating Terraform Modules
- Terraform Configurations
- Terraform Configuration Syntax
This chapter provides a hands-on tutorial to introduce you to the components of Load Balancing.

The Load Balancing service allows you to create highly available load balancers within your VCN. All load balancers come with provisioned bandwidth. You can choose to create a load balancer with either a public or a private IP address. Load balancers support SSL handling for both incoming traffic and traffic with your application servers.

When you create a load balancer with a public IP address you specify two subnets, each in a different availability domain, on which the load balancer can run. The two subnets ensure the high availability of the load balancer. A private load balancer requires only one subnet.

This tutorial is an introduction to Load Balancing. You can follow the steps here to create a public load balancer and verify it with a basic web server application. For complete details about the service and its components, see Overview of Load Balancing in the Oracle Cloud Infrastructure User Guide.

Before You Begin

To try out the Load Balancing service for this tutorial, you must have these things set up first:

- A virtual cloud network (VCN) with two subnets (each in a different availability domain) and an internet gateway
- Two instances running (in different subnets)
- A web application (such as Apache HTTP Server) running on each instance

If you don't have these items set up yet, you can follow the steps shown here.

**Tip:**
If you need an introduction to VCNs and instances, try the Tutorial - Launching Your First Linux Instance on page 66 first.

VCN and Instance Setup

The following diagram shows the prerequisite VCN and instances:
Create a VCN

1. Open the navigation menu. Under **Core Infrastructure**, go to **Networking** and click **Virtual Cloud Networks**. Ensure that the Sandbox compartment (or the compartment designated for you) is selected in the **Compartment** list on the left.

2. Click **Networking Quickstart**.

3. Select **VCN with Internet Connectivity**, and then click **Start Workflow**.

4. Enter the following:

   - **VCN Name**: Enter a name for your cloud network. The name is incorporated into the names of all the related resources that are automatically created. Avoid entering confidential information.
   - **Compartment**: This field defaults to your current compartment. Select the compartment you want to create the VCN and related resources in, if not already selected.
   - **VCN CIDR Block**: Enter a valid CIDR block for the VCN. For example 10.0.0.0/16.
   - **Public Subnet CIDR Block**: Enter a valid CIDR block for the subnet. The value must be within the VCN's CIDR block. For example: 10.0.0.0/24.
   - **Private Subnet CIDR Block**: Enter a valid CIDR block for the subnet. The value must be within the VCN's CIDR block and not overlap with the public subnet's CIDR block. For example: 10.0.1.0/24.
   - Accept the defaults for any other fields.
5. Click Next.
6. Review the list of resources that the workflow will create for you. Notice that the workflow will set up security list rules and route table rules to enable basic access for the VCN.
7. Click Create to start the short workflow.
8. After the workflow completes, click View Virtual Cloud Network.

The cloud network has the following resources and characteristics:

- Internet gateway.
- NAT gateway.
- Service gateway with access to the Oracle Services Network.
- A regional public subnet with access to the internet gateway. This subnet uses the VCN's default security list and default route table. Instances in this subnet may optionally have public IP addresses.
- A regional private subnet with access to the NAT gateway and service gateway. This subnet uses a custom security list and custom route table that the workflow created. Instances in this subnet cannot have public IP addresses.
- Use of the Internet and VCN Resolver for DNS.

Launch two instances

This example uses the VM.Standard2.1 shape. If you prefer, you can choose a larger shape.

1. Open the navigation menu. Under Core Infrastructure, go to Compute and click Instances.
2. Click Create Instance.
3. On the Create Compute Instance page, for Name, enter a name, for example: Webserver1.
4. In the Configure placement and hardware section, enter the following:
   a. Availability domain: Select the first availability domain in the list (AD-1).
   b. Image: Select the Oracle Linux 7.x image.
   c. Shape: Click Change Shape, and then make the following selections:
      1. For Instance type, select Virtual Machine.
      2. For Shape series, select Intel Skylake, and then select the VM Standard2.1 shape (1 OCPU, 15 GB RAM).
      3. Click Select Shape.
5. In the Configure networking section, configure the network details for the instance. Do not accept the defaults.
   a. For Network, leave Select existing virtual cloud network selected
   b. Virtual cloud network in <compartment_name>: Select the cloud network that you created. If necessary, click Change compartment to switch to the compartment containing the cloud network that you created.
   c. For Subnet, leave Select existing subnet selected.
   d. Subnet in <compartment_name>: Select the public subnet in availability domain 1. If necessary, click Change compartment to switch to the compartment that contains the correct subnet.
   e. Leave the Use network security groups to control traffic check box cleared.
   f. Select the Assign a public IP address option. This creates a public IP address for the instance, which you need to access the instance. If you have trouble selecting this option, confirm that you selected the public subnet that was created with your VCN, not a private subnet.
6. In the Add SSH keys section, upload the public key (.pub) portion of the key pair that you want to use for SSH access to the instance. Browse to the key file that you want to upload, or drag and drop the file into the box.
   If you do not have an SSH key pair, see Creating a Key Pair on page 67.
7. In the Configure boot volume section, leave all the options cleared.
8. Click Show Advanced Options. On the Networking tab, ensure that the Hostname field is blank.
9. Click Create.
10. Repeat the previous steps. This time, enter the name Webserver2 and select the subnet in availability domain 2.
Start a web application on each instance

This example uses Apache HTTP Server.

1. Connect to your instance. If you need help, see Connecting to Your Instance on page 72.
2. Run yum update:
   ```
sudo yum -y update
   ```
3. Install the Apache HTTP Server:
   ```
sudo yum -y install httpd
   ```
4. Allow Apache (HTTP and HTTPS) through the firewall:
   ```
sudo firewall-cmd --permanent --add-port=80/tcp
 sudo firewall-cmd --permanent --add-port=443/tcp
   ```
   **Note:**
   Open the Firewall
   If you choose to run a different application than Apache, ensure that you run the preceding command to open the firewall for your application's port.
5. Reload the firewall:
   ```
sudo firewall-cmd --reload
   ```
6. Start the web server:
   ```
sudo systemctl start httpd
   ```
7. Add an index.htm file on each server that indicates which server it is, for example:
   a. On Webserver 1:
      ```
sudo su

 echo 'WebServer1' >/var/www/html/index.html
      ```
   b. On Webserver 2:
      ```
sudo su

 echo 'WebServer2' >/var/www/html/index.html
      ```

Tutorial Overview

In this tutorial, you create a public load balancer and verify it. A load balancer requires configuration of several components to be functional, and this tutorial walks you through each step to help you understand these components.

To create and test the load balancer, complete the following steps:

1. Add two subnets to your VCN to host your load balancer.
2. Create a load balancer.
3. Create a backend set with health check.
4. Add backend servers to your backend set.
5. Create a listener.
6. Update the load balancer subnet security list and allow internet traffic to the listener.
7. Verify your load balancer.
8. Update rules to protect your backend servers.
9. Delete your load balancer.

Add Two Subnets to Your VCN to Host Your Load Balancer

Your load balancer must reside in different subnets from your application instances. This configuration allows you to keep your application instances secured in subnets with stricter access rules, while allowing public internet traffic to the load balancer in the public subnets.

To add the public subnets to your VCN:

Add a Security List

1. Open the navigation menu. Under **Core Infrastructure**, go to **Networking** and click **Virtual Cloud Networks**.
2. The list of VCNs in the current compartment is displayed.
3. Click the name of the VCN that includes your application instances.
4. Under **Resources**, click **Security Lists**.
5. Click **Create Security List**.
   a. **Create in Compartment**: This field defaults to your current compartment. Select the compartment you want to create the security list in, if not already selected.
   b. **Name**: Enter a name, for example, "LB Security List".
   c. Delete the entry for the ingress rule and the entry for the egress rule. The security list must have no rules. The correct rules are added automatically during the load balancer workflow.
   d. **Tags**: Leave as is (you can add tags later if you like).
   e. Click **Create Security List**.
   f. Return to your Virtual Cloud Network Details page.

Add a Route Table

1. Under **Resources**, click **Route Tables**.
2. Click **Create Route Table**. Enter the following:
   a. **Create in Compartment**: This field defaults to your current compartment. Select the compartment you want to create the route table in, if not already selected.
   b. **Name**: Enter a name, for example, "LB Route Table".
   c. **Target Type**: Select Internet Gateway.
   d. **Destination CIDR Block**: Enter 0.0.0.0/0.
   e. **Compartments**: Select the compartment that contains your VCN's internet gateway.
   f. **Target**: Select your VCN's internet gateway.
   g. **Tags**: Leave as is (you can add tags later if you like).
   h. Click **Create Route Table**.

Create the first subnet

1. Under **Resources**, click **Subnets**.
2. Click **Create Subnet**.
3. Enter or select the following:
   a. **Name**: Enter a name, for example, "LB Subnet 1".
   b. **availability domain**: Choose the first availability domain (AD-1).
   c. **CIDR Block**: Enter 10.0.4.0/24.
   d. **Route Table**: Select the LB Route Table you created.
   e. **Subnet Access**: Select **Public Subnet**.
   f. **DNS Resolution**: Select **Use DNS Hostnames in this Subnet**.
   g. **DHCP Options**: Select **Default DHCP Options for LB_Network**.
   h. **Security Lists**: Select the LB Security List you created.
   i. **Tags**: Leave as is (you can add tags later if you like).

4. Click **Create**.

### Create the second subnet

Create a second load balancer subnet in a different availability domain.

1. In the details page of your VCN, click **Create Subnet**.
2. Enter the following:
   a. **Name**: Enter a name, for example, "LB Subnet 2".
   b. **availability domain**: Choose the second availability domain (AD-2).
   c. **CIDR Block**: Enter 10.0.5.0/24.
   d. **Route Table**: Select the LB Route Table you created.
   e. **Subnet Access**: Select **Public Subnet**.
   f. **DNS Resolution**: Select **Use DNS Hostnames in this Subnet**.
   g. **DHCP Options**: Select **Default DHCP Options for LB_Network**.
   h. **Security Lists**: Select the LB Security List you created.
   i. **Tags**: Leave as is (you can add tags later if you like).

3. Click **Create**.

The following figure shows the new components added to the VCN:
Getting Started with Load Balancing

Create the Load Balancer

When you create a public load balancer, you choose its shape (size) and you select two subnets, each in a different availability domain. This configuration ensures that the load balancer is highly available. It is active in only one subnet at a time. This load balancer comes with a public IP address and provisioned bandwidth corresponding to the shape you chose.

Tip:

Although the load balancer resides in a subnet, it can direct traffic to backend sets that reside in any of the subnets within the VCN.

1. Open the navigation menu. Under the Core Infrastructure group, go to Networking and click Load Balancers.

   Ensure that the Sandbox compartment (or the compartment designated for you) is selected on the left.

2. Click Create Load Balancer.

3. Enter the following:

   - **Name:** Enter a name for your load balancer.
   - **Shape:** Select 100 Mbps. The shape specifies the bandwidth of the load balancer. For the tutorial, use the smallest shape. The shape cannot be changed later.
   - **Virtual Cloud Network:** Select the virtual cloud network for your load balancer.
   - **Visibility:** Choose Create Public Load Balancer.
   - **Subnet (1 of 2):** Select LB Subnet 1.
   - **Subnet (2 of 2):** Select LB Subnet 2. The second subnet must be in a different availability domain than the first subnet you chose.

4. Click Create.
When the load balancer is created, you get a public IP address. You route all your incoming traffic to this IP address. The IP address is available from both subnets that you specified, but it is active in only one subnet at a time.

Create a Backend Set

A backend set is a collection of backend servers to which your load balancer directs traffic. A list of backend servers, a load balancing policy, and a health check script define each backend set. A load balancer can have multiple backend sets, but for this tutorial, you create only one backend set that includes both of your web servers.

In this step, you define the backend set policy and health check. You add your servers in a separate step.

To create the backend set:

1. Click the name of your load balancer and view its details.
2. Click Create Backend Set.
3. In the dialog box, enter:
   a. **Name**: Give your load balancer backend set a name. The name cannot contain spaces.
   b. **Policy**: Choose Weighted Round Robin.
4. Enter the Health Check details.

Load Balancing automatically checks the health of the instances for your load balancer. If it detects an unhealthy instance, it stops sending traffic to the instance and reroutes traffic to healthy instances. In this step, you provide the information required to check the health of servers in the backend set and ensure that they can receive data traffic.

- **Protocol**: Select HTTP.
- **Port**: Enter 80
- **URL Path (URI)**: Enter /

The rest of the fields are optional and can be left blank for this tutorial.
5. Click **Create**.

When the Backend Set is created, the Work Request shows a status of Succeeded. Close the Work Request dialog box.

**What is a policy?**

The policy determines how traffic is distributed to your backend servers.

- **Round Robin** - This policy distributes incoming traffic sequentially to each server in a backend set list. When each server has received a connection, the load balancer repeats the list in the same order.
- **IP Hash** - This policy uses an incoming request's source IP address as a hashing key to route non-sticky traffic to the same backend server. The load balancer routes requests from the same client to the same backend server as long as that server is available.
- **Least Connections** - This policy routes incoming non-sticky request traffic to the backend server with the fewest active connections.

**Add Backends (Servers) to Your Backend Set**

After the backend set is created, you can add compute instances (backend servers) to it. To add a backend server, you can enter the OCID for each instance and your application port. The OCID enables the Console to create the security list rules required to enable traffic between the load balancer subnets and the instance subnets.

<table>
<thead>
<tr>
<th><strong>Tip:</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Security lists are virtual firewall rules for your VCN that provide ingress and egress rules to specify the types of traffic allowed in and out of a subnet. Update your VCN's security list rules to allow traffic flow between the load balancer subnets and the backend server subnets. In this step, you can have the security lists automatically updated by providing the instance OCIDs.</td>
</tr>
</tbody>
</table>

To **add a server to your backend set:**

1. On the details page of your load balancer, click **Backend Sets**. The backend set you just created is displayed.
2. Click the name of the backend set and view its details.
3. Click **Edit Backends**.

In the dialog:

1. Ensure that **Help me create proper security list rules** is checked.
2. **OCID**: Paste the OCID of the first instance (Webserver1).
3. **Port**: Enter 80.
4. **Weight**: Leave blank to weight the servers evenly.
5. Repeat Steps 2 through 4, pasting in the OCID for the second instance (Webserver2).
6. Click **Create Rules**.

The following figure shows the components created in this task:
Getting Started with Load Balancing

What rules are added to my security lists?

The system updates the security list used by your load balancer subnets to allow egress traffic from the load balancer to each backend server's subnet:

- Updates to the security list for your load balancer subnets:
  - Allow egress traffic to the backend server 1 subnet (for example, Public-Subnet-AD1)
  - Allow egress traffic to the backend server 2 subnet (for example, Public-Subnet-AD2)

![Egress Rules for LB Security List]

The system updates the security list used by your backend server subnets to allow ingress traffic from the load balancer subnets:
• Updates to the security list for your backend server subnets:
  • Allow ingress traffic from load balancer subnet 1
  • Allow ingress traffic from load balancer subnet 2

How do I get the OCID of an instance?

The OCID (Oracle Cloud Identifier) is displayed when you view the instance, on the instance details page.

1. In the dialog, right-click **View Instances** and select a browser option to open the link in a new tab.

   ![Image of View Instances](image)

   A new Console browser tab launches, displaying the instances in the current compartment.

2. In the tab that just opened, if your instances are not in the current compartment, select the compartment to which the instance belongs. (Select from the list on the left side of the page.)

   A shortened version of the OCID is displayed next to each instance.

3. Click the instance that you’re interested in.

   A shortened version of the OCID is displayed on the instance details page.

4. Click **Copy** to copy the OCID. You can then paste it into the Instance ID field.
Create the Listener for Your Load Balancer

A listener is an entity that checks for connection requests. The load balancer listener listens for ingress client traffic using the port you specify within the listener and the load balancer's public IP.

In this tutorial, you define a listener that accepts HTTP requests on port 80.

<table>
<thead>
<tr>
<th>Note:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening on Multiple Ports</td>
</tr>
<tr>
<td>A listener can listen on one port. To listen on more ports (such as 443 for SSL), create another listener. For information on enabling SSL for your load balancer, see &quot;Managing SSL Certificates&quot; in the Oracle Cloud Infrastructure User Guide.</td>
</tr>
</tbody>
</table>

To create a listener:

1. On your Load Balancer Details page, click **Listeners**.
2. Click **Create Listener**.
3. Enter the following:
   - **Name:** Enter a friendly name.
   - **Protocol:** Select HTTP.
   - **Port:** Enter 80 as the port on which to listen for incoming traffic.
   - **Backend Set:** Select the backend set you created.
4. Click **Create**.

Update Load Balancer Security Lists and Allow Internet Traffic to the Listener

When you create a listener, you must also update your VCN's security list to allow traffic to that listener.

**Allow the Listener to Accept Traffic**

The subnets where the load balancer resides must allow the listener to accept traffic. To enable the traffic to get to the listener, update the load balancer subnet's security list.

**To update the security list to allow the listener to accept traffic:**

1. Open the navigation menu. Under **Core Infrastructure**, go to **Networking** and click **Virtual Cloud Networks**.
   - The list of VCNs in the current compartment is displayed.
2. Click **Security Lists**. A list of the security lists in the cloud network is displayed.
3. Click the LB Security List. The details are displayed.
4. Click **Edit All Rules**.
5. Under Allow Rules for Ingress, click **Add Rule**.
6. Enter the following ingress rule:
   - **Source Type:** Select CIDR
   - **Source CIDR:** Enter 0.0.0.0/0
   - **IP Protocol:** Select TCP
   - **Destination Port Range:** Enter 80 (the listener port).
7. Click **Save Security List Rules**.

If you created other listeners, add an ingress rule for each listener port to allow traffic to the listener. For example, if you created a listener on port 443, repeat the previous steps using **Destination Port Range**: 443.
The following figure shows the component created in this task:

### Verify Your Load Balancer

To test your load balancer's functionality, you can open a web browser and navigate to its public IP address (listed on the load balancer's detail page). If the load balancer is properly configured, you can see the name of one of the web server instances:

1. Open a web browser.
2. Enter the load balancer public IP address.

The index.htm page of one of your web servers appears.
Getting Started with Load Balancing

3. Refresh the web page.

The index.htm page of the other web server now appears.

Because you configured the load balancer backend set policy as Round Robin, refreshing the page alternates between the two web servers.

Update Rules to Limit Traffic to Backend Servers

Update the default security list and the default route table to limit traffic to your backend servers. If you used the Create Virtual Cloud Network Plus Related Resources option to create your VCN and you are not going to terminate this load balancer immediately, these actions are important.

To delete the default route table rule:
1. Open the navigation menu. Under Core Infrastructure, go to Networking and click Virtual Cloud Networks.
2. Click the name of your VCN and review its details.
3. Under Resources, click Route Tables.
4. Click the Default Route Table for the VCN.
5. Click Edit Route Rules.
6. Click the X next to the route rule, and then click Save.

There are now no Route Rules for the default route table.

To edit the default security list rules:
1. Go to your Virtual Cloud Network Details page.
3. Click the Default Security List for the VCN.
4. Click Edit All Rules.
5. Under Allow Rules for Ingress, delete the following rules:

<table>
<thead>
<tr>
<th>Action</th>
<th>Source CIDR</th>
<th>IP Protocol</th>
<th>Destination Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>0.0.0.0/0</td>
<td>TCP</td>
<td>22</td>
</tr>
<tr>
<td>Delete</td>
<td>0.0.0.0/0</td>
<td>ICMP</td>
<td>3,4</td>
</tr>
<tr>
<td>Delete</td>
<td>10.0.0.0/16</td>
<td>ICMP</td>
<td>3</td>
</tr>
</tbody>
</table>

6. Under Allow rules for Egress, delete the rule. There can be no Egress Rules.

Now your instances can receive data traffic from, and direct traffic to, only the load balancer subnets. You no longer can connect directly to your instance's public IP address.

Delete Your Load Balancer

When your load balancer becomes available, you are billed for each hour that you keep it running. Once you no longer need a load balancer, you can delete it. When the load balancer is deleted, you stop incurring charges for it. Deleting a load balancer does not affect the backend servers or subnets used by the load balancer.
To delete your load balancer:

1. Open the navigation menu. Under the **Core Infrastructure** group, go to **Networking** and click **Load Balancers**.
2. Choose the **Compartment** that contains your load balancer.
3. Next to your load balancer, click the Actions icon (three dots), and then click **Terminate**.
4. Confirm when prompted.

If you want to delete the instances and VCN you created for this tutorial, follow the instructions in **Cleaning Up Resources from the Tutorial** on page 76.
Chapter 17

Putting Data into Object Storage

Object Storage provides reliable, secure, and scalable object storage. Object storage is a storage architecture that stores and manages data as objects. Some typical use cases include data backup, file sharing, and storing unstructured data like logs and sensor-generated data.

Object Storage uses buckets to organize your files. To use Object Storage, first create a bucket and then begin adding data files.

Use this procedure to quickly get started. For more details, see "Overview of Object Storage" in the Oracle Cloud Infrastructure User Guide.

Creating a Bucket

To create a bucket to store objects:

1. Open the navigation menu. Under Core Infrastructure, click Object Storage.
   A list of the buckets in the compartment you're viewing is displayed.
2. Select a compartment from the Compartment list on the left side of the page.
   A list of existing buckets is displayed.
3. Click Create Bucket.
4. In the Create Bucket dialog box, specify the attributes of the bucket:
   • Bucket Name: The system generates a default bucket name that reflects the current year, month, day, and time, for example bucket-20190306-1359. If you change this default to any other bucket name, use letters, numbers, dashes, underscores, and periods. Do not include any confidential information.
   • Storage Tier: Select the tier in which you want to store your data. Available tiers include:
     • Standard is the primary, default Object Storage tier for storing frequently accessed data that requires fast and immediate access.
     • Archive is a special tier for storing infrequently accessed data that requires long retention periods. Access to data in the Archive tier is not immediate. You must restore archived data before it's accessible. For more information, see "Overview of Archive Storage" in the Oracle Cloud Infrastructure User Guide.
   • Object Events: Select Emit Object Events if you want to enable the bucket to emit events for object state changes. For more information about events, see Overview of Events.
   • Encryption: Buckets are encrypted with keys managed by Oracle by default, but you can optionally encrypt the data in this bucket using your own Vault encryption key. To use Vault for your encryption needs, select Encrypt Using Customer-Managed Keys. Then, select the Vault Compartment and Vault that contain the master encryption key you want to use. Also select the Master Encryption Key Compartment and Master Encryption Key. For more information about encryption, see Overview of Vault. For details on how to create a vault, see Managing Vaults.
   • Tags: If you have permissions to create a resource, then you also have permissions to apply free-form tags to that resource. To apply a defined tag, you must have permissions to use the tag namespace. For more information about tagging, see Resource Tags. If you are not sure if you should apply tags, then skip this option (you can apply tags later) or ask your administrator.
5. Click **Create Bucket**.

The bucket is created immediately and you can add objects to it. Objects added to archive buckets are immediately archived and must be **restored** before they are available for download.

**Uploading Files to a Bucket**

Object Storage supports uploading individual files up to 10 TiB. Because memory capacity and browser capability can impact uploading objects using the Console, use the CLI, SDK, or API for larger files. See “Developer Tools” in the *Oracle Cloud Infrastructure User Guide*.

To upload files to your bucket using the Console:

1. From the Object Storage Details screen, click the bucket name to view its details.
2. Click **Upload Objects**.
3. Select the object or objects to upload in one of two ways:
   - Drag files from your computer into the Drop files here ... section.
   - Click the **select files** link to display a file selection dialog box.

   As you select files to upload, they are displayed in a scrolling list. If you decide that you do not want to upload a file that you have selected, click the X icon to the right of the file name.

   If selected files to upload and files already stored in the bucket have the same name, messages warning you of an overwrite are displayed.

4. In the **Object name prefix field**, optionally specify a file name prefix for the file that you have selected to upload.
5. Click **Upload Objects**.

   The selected objects are uploaded. Click **Close** to return to the bucket.

**What’s Next**

For information on managing and accessing your object files, see “Overview of Object Storage” in the *Oracle Cloud Infrastructure User Guide*.
Chapter 18

Getting Started with Audit

This chapter provides a hands-on tutorial to introduce you to the components of the Oracle Cloud Infrastructure Audit service.

The Oracle Cloud Infrastructure Audit service is included with your Oracle Cloud Infrastructure tenancy. The Audit service automatically records calls to the public application programming interface (API) endpoints for your Oracle Cloud Infrastructure tenancy. The service records events relating to the actions taken on the Oracle Cloud Infrastructure resources. Events recorded in the log can be viewed, retrieved, stored, and analyzed. These log events include information such as:

- ID of the caller
- target resource
- time of the recorded event
- request parameters
- response parameters

This task helps you get started with the Audit service by showing you how to find and view a specific event.

For complete details on Audit, see "Overview of the Audit in the Oracle Cloud Infrastructure User Guide".

Prerequisite

To create an event to view, create and delete a VCN in the Networking service.

Create and Delete a VCN

1. Select the compartment (from the list on the left) in which you want to create the VCN.
2. Open the navigation menu. Under Core Infrastructure, go to Networking and click Virtual Cloud Networks.
3. Click Create Virtual Cloud Network.
4. Enter the following:
   a. **Name**: Enter "Audit_Test".
   b. **CIDR Block**: Enter "10.0.0.0/16".
   c. Leave all other fields with their default settings. Click Create Virtual Cloud Network.

   The VCN is displayed in the list.
5. Next to your VCN name, click the OCID: Copy link. You will use the OCID to help you find the event.
6. Terminate the VCN: Click the Actions icon (three dots), and then click Terminate. Confirm when prompted.

Using Audit to View Events

In this task, you will use Audit to find the delete VCN event.

Tip:
Audit time stamps events according to Greenwich Mean Time (GMT). Before you get started, be aware of your local time zone offset.

1. Open the navigation menu. Under Governance and Administration, go to Governance and click Audit.

The list of events that occurred in the current compartment is displayed. Audit logs are organized by compartment, so if you are looking for a particular event, you must know which compartment the event occurred in.

2. From the Compartments list, select the compartment in which you created the VCN.

The list of events for the compartment is displayed.

3. To find the delete VCN event, you can try the following filters:

   **Filter by time**
   
   a. Click in the Start Date box to display the date and time editor.
   b. Select the current date from the calendar. Type or select values for hour and minute to approximate the preceding hour. Enter the time as Greenwich Mean Time (GMT) using 24-hour clock notation.
   c. Repeat the above steps to enter an end date for the current date and time, so that you filter results for the preceding hour.

   **Example**

   If you are in Los Angeles time zone and you are looking for an event that occurred between 1:15 PM and 2:15 PM local time on October 25, enter 21:15 and 22:15 to account for the GMT offset.

   d. Click Search.

   **Filter events by keywords**

   You can further filter the results list to display only log entries that include a specific text string. Try the following entries to help you find the delete VCN event:

   **Tip:**

   When you filter by keywords, use quotes to avoid results that have a similar string embedded in a longer string. For example, the quotes around
the responseStatus "204" prevent matches of 204 embedded in a longer string somewhere else in the audit event.

• Filter by the responseStatus value

In the Keywords box, type "204" and click Search to display only events that returned the 204 (i.e., deleting resource) response status.

• Filter by requestResource value

In the Keywords box, paste the VCN OCID that you copied to your clipboard in the prerequisite step and click Search.

Review the events to find the DELETE event.

Filter events by request action types

• Filter by the request action types

In Request Actions Types, select "DELETE" and click Search.

The list filters to show only DELETE events. Scan the list to find your VCN termination event.

4. View the details of your event:

• To see only the top-level details, click the down arrow to the right of an event.
• To see lower-level details, click { . . . } to the right of the collapsed parameter.
This chapter helps you get started with Oracle Platform Services on Oracle Cloud Infrastructure.

**Note:**
Oracle Platform Services are not available in Oracle Cloud Infrastructure Government Cloud tenancies.

### Supported Platform Services

The following platform services are supported on Oracle Cloud Infrastructure:

- Analytics Cloud
- API Platform Cloud Service
- Autonomous Data Warehouse
- Integration
- Autonomous Mobile Cloud Enterprise
- NoSQL Database Cloud Service
- Oracle Visual Builder
- Content and Experience Cloud
- Data Hub Cloud Service
- Data Integration Platform Cloud
- Database Cloud Service
- Developer Cloud Service
- Event Hub Cloud Service
- Java Cloud Service
- Oracle SOA Cloud Service

For services that are supported on both Oracle Cloud Infrastructure and Oracle Cloud Infrastructure Classic, you can choose Oracle Cloud Infrastructure during instance creation by selecting an appropriate region.

### Understand the Infrastructure Prerequisites

Before creating instances of your service on Oracle Cloud Infrastructure, you must create certain resources in Oracle Cloud Infrastructure for use by your platform service instances.

See "Prerequisites for Oracle Platform Services on Oracle Cloud Infrastructure" in the *Oracle Cloud Infrastructure User Guide*.
Learn About Service-Specific Differences and Workflows

Broadly, the service features are the same regardless of the infrastructure you choose (Oracle Cloud Infrastructure or Oracle Cloud Infrastructure Classic), but differences may exist in some services. And the workflows for creating instances on Oracle Cloud Infrastructure may vary across services.

See the following documentation:

<table>
<thead>
<tr>
<th>Service</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Hub Cloud Service</td>
<td>About Oracle Data Hub Cloud Service Clusters in Oracle Cloud Infrastructure</td>
</tr>
<tr>
<td>Database Cloud Service</td>
<td>About Database Deployments in Oracle Cloud Infrastructure</td>
</tr>
<tr>
<td>Event Hub Cloud Service</td>
<td>About Instances in Oracle Cloud Infrastructure</td>
</tr>
<tr>
<td>Java Cloud Service</td>
<td>About Java Cloud Service Instances in Oracle Cloud Infrastructure</td>
</tr>
<tr>
<td>Oracle SOA Cloud Service</td>
<td>About SOA Cloud Service Instances in Oracle Cloud Infrastructure Classic and Oracle Cloud Infrastructure</td>
</tr>
</tbody>
</table>

REST API Endpoints for Platform Services

You can use the following URL structure to access the REST API endpoints for a Platform Service:

https://<rest_server>/<endpoint_path>

where:

- `<endpoint_path>` is the relative path that defines the REST resource. For a list of available paths, refer to the REST API documentation for the specific service.
- `<rest_server>` is the REST server. Choose the REST server based on the region in which your platform service was created. Refer to the following table.

<table>
<thead>
<tr>
<th>REST Server</th>
<th>Regions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>psm.us.oraclecloud.com</strong></td>
<td>• US East (Ashburn)</td>
</tr>
<tr>
<td></td>
<td>• US West (Phoenix)</td>
</tr>
<tr>
<td></td>
<td>• US West (San Jose)</td>
</tr>
<tr>
<td></td>
<td>• Canada Southeast (Montreal)</td>
</tr>
<tr>
<td></td>
<td>• Canada Southeast (Toronto)</td>
</tr>
<tr>
<td><strong>psm.europe.oraclecloud.com</strong></td>
<td>• Germany Central (Frankfurt)</td>
</tr>
<tr>
<td></td>
<td>• Netherlands Northwest (Amsterdam)</td>
</tr>
<tr>
<td></td>
<td>• Saudi Arabia West (Jeddah)</td>
</tr>
<tr>
<td></td>
<td>• Switzerland North (Zurich)</td>
</tr>
<tr>
<td></td>
<td>• UAE East (Dubai)</td>
</tr>
<tr>
<td></td>
<td>• UK South (London)</td>
</tr>
<tr>
<td>REST Server</td>
<td>Regions</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>psm.aucom.oraclecloud.com</td>
<td>• Australia East (Sydney)</td>
</tr>
<tr>
<td></td>
<td>• Australia Southeast (Melbourne)</td>
</tr>
<tr>
<td></td>
<td>• India West (Mumbai)</td>
</tr>
<tr>
<td></td>
<td>• India South (Hyderabad)</td>
</tr>
<tr>
<td></td>
<td>• Japan Central (Osaka)</td>
</tr>
<tr>
<td></td>
<td>• Japan East (Tokyo)</td>
</tr>
<tr>
<td></td>
<td>• South Korea Central (Seoul)</td>
</tr>
<tr>
<td></td>
<td>• South Korea North (Chuncheon)</td>
</tr>
<tr>
<td>psm.brcom-central-1.oraclecloud.com</td>
<td>Brazil East (Sao Paulo)</td>
</tr>
<tr>
<td>psm-&lt;account_name&gt;.console.oraclecloud.com</td>
<td>All regions</td>
</tr>
<tr>
<td></td>
<td>&lt;account_name&gt; is your tenant name or cloud account name</td>
</tr>
<tr>
<td>psm-cacct-&lt;account_id&gt;.console.oraclecloud.com</td>
<td>All regions</td>
</tr>
<tr>
<td></td>
<td>&lt;account_id&gt; is the alphanumeric ID of your tenant name or cloud account</td>
</tr>
</tbody>
</table>

You can find `<account_name>` or `<account_id>` in either:

- The welcome email sent to your cloud account administrator
- The URL used to access the console for the Platform Service
Chapter 20

Getting Started with Oracle Applications

This chapter helps you get started with Oracle Applications on Oracle Cloud Infrastructure.

Support for Oracle Applications

Oracle Cloud Infrastructure is an ideal place to host your Oracle Applications. You can deploy and manage Oracle applications on Oracle Cloud Infrastructure using the standard procedures found in the application product documentation, or using Oracle-provided automation solutions (available for some applications).

Oracle applications that meet the following criteria are supported:

- The application version is under Premier, Extended, or Sustained support.
- You plan to run the application on an operating system and database version that is supported on Oracle Cloud Infrastructure and certified for the application.

Oracle offers solutions and documentation to make deploying applications on Oracle Cloud Infrastructure easier. Solutions are available for the following applications:

- Oracle E-Business Suite
- Oracle JD Edwards EnterpriseOne
- Oracle PeopleSoft

The following Oracle Learning Library page describes the currently available solutions:

Oracle Applications on Oracle Cloud Infrastructure
Chapter 21

Setting Up Your Tenancy

After Oracle creates your tenancy in Oracle Cloud Infrastructure, an administrator at your company will need to perform some set up tasks and establish an organization plan for your cloud resources and users. Use the information in this topic to help you get started.

Tip:
To quickly get some users up and running while you are still in the planning phase, see Adding Users on page 62.

Create a Plan

Before adding users and resources you should create a plan for your tenancy. Fundamental to creating your plan is understanding the components of the Oracle Cloud Infrastructure Identity and Access Management (IAM). Ensure that you read and understand the features of IAM. See "Overview of the IAM" in the Oracle Cloud Infrastructure User Guide.

Your plan should include the compartment hierarchy for organizing your resources and the definitions of the user groups that will need access to the resources. These two things will impact how you write policies to manage access and so should be considered together.

Use the following primer topics to help you get started with your plan:

- Understanding Compartments on page 138
- Consider Who Should Have Access to Which Resources on page 139

Understanding Compartments

Compartments are the primary building blocks you use to organize your cloud resources. You use compartments to organize and isolate your resources to make it easier to manage and secure access to them.

When your tenancy is provisioned, a root compartment is created for you. Your root compartment holds all of your cloud resources. You can think of the root compartment like a root folder in a file system.

The first time you sign in to the Console and select a service, you will see your one, root compartment.
Setting Up Your Tenancy

You can create compartments under your root compartment to organize your cloud resources in a way that aligns with your resource management goals. As you create compartments, you control access to them by creating policies that specify what actions groups of users can take on the resources in those compartments.

Keep in mind the following when you start working with compartments:

- At the time you create a resource (for example, instance, block storage volume, VCN, subnet), you must decide in which compartment to put it.
- Compartments are logical, not physical, so related resource components can be placed in different compartments. For example, your cloud network subnets with access to an internet gateway can be secured in a separate compartment from other subnets in the same cloud network.
- You can create a hierarchy of compartments up to six compartments deep under the tenancy (root compartment).
- When you write a policy rule to grant a group of users access to a resource, you always specify the compartment to apply the access rule to. So if you choose to distribute resources across compartments, remember that you will need to provide the appropriate permissions for each compartment for users that will need access to those resources.
- In the Console, compartments behave like a filter for viewing resources. When you select a compartment, you only see resources that are in the compartment selected. To view resources in another compartment, you must first select that compartment. You can use the Search feature to get a list of resources across multiple compartments. See Overview of Search.
- You can use the compartment explorer to get a complete view of all the resources (across regions) that reside in a specific compartment. See Viewing All Resources in a Compartment.
- If you want to delete a compartment, you must delete all resources in the compartment first.
- Finally, when planning for compartments you should consider how you want usage and auditing data aggregated.

Consider Who Should Have Access to Which Resources

Another primary consideration when planning the setup of your tenancy is who should have access to which resources. Defining how different groups of users will need to access the resources will help you plan how to organize your resources most efficiently, making it easier to write and maintain your access policies.

For example, you might have users who need to:
Setting Up Your Tenancy

- View the Console, but not be allowed to edit or create resources
- Create and update specific resources across several compartments (for example, network administrators who need to manage your cloud networks and subnets)
- Launch and manage instances and block volumes, but not have access to your cloud network
- Have full permissions on all resources, but only in a specific compartment
- Manage other users’ permissions and credentials

To see some sample policies, see "Common Policies" in the Oracle Cloud Infrastructure User Guide.

Sample Approaches to Setting Up Compartments

Put all your resources in the tenancy (root compartment)

If your organization is small, or if you are still in the proof-of-concept stage of evaluating Oracle Cloud Infrastructure, you might consider placing all of your resources in the root compartment (tenancy). This approach makes it easy for you to quickly view and manage all your resources. You can still write policies and create groups to restrict permissions on specific resources to only the users who need access.

High-level tasks to set up the single compartment approach:

1. (Best practice) Create a sandbox compartment. Even though your plan is to maintain your resources in the root compartment, Oracle recommends setting up a sandbox compartment so that you can give users a dedicated space to try out features. In the sandbox compartment you can grant users permissions to create and manage resources, while maintaining stricter permissions on the resources in your tenancy (root) compartment. See Create a Sandbox Compartment.

Create compartments to align with your company projects

Consider this approach if your company has multiple departments that you want to manage separately or if your company has several distinct projects that would be easier to manage separately.

In this approach, you can add a dedicated administrators group for each compartment (project) who can set the access policies for just that project. (Users and groups still must be added at the tenancy level.) You can give one group control over all their resources, while not allowing them administrator rights to the root compartment or any other projects. In this way, you can enable different groups at your company to set up their own "sub-clouds" for their own resources and administer them independently.

High-level tasks to set up the multiple project approach:

1. Create a sandbox compartment. Oracle recommends setting up a sandbox compartment so you can give users a dedicated space to try out features. In the sandbox compartment you can grant users permissions to create and manage resources, while maintaining stricter permissions on the resources in your tenancy (root) compartment.
2. Create a compartment for each project, for example, ProjectA, ProjectB.
3. Create an administrators group for each project, for example, ProjectA_Admins.
4. Create a policy for each administrators group.
   Example:
   ```allow group ProjectA_Admins to manage all-resources in compartment ProjectA```
6. Let the administrators for ProjectA and ProjectB create subcompartments within their designated compartment to manage resources.
7. Let the administrators for ProjectA and ProjectB create the policies to manage the access to their compartments.
Chapter 22

Contacting Support

This chapter explains how to contact support about issues with Oracle Cloud Infrastructure.

Getting Help and Contacting Support

When using Oracle Cloud Infrastructure, sometimes you need to get help from the community or to talk to someone in Oracle support. This topic provides more information about accessing these tools.

Tip:

Console announcements appear at the top of the Console to communicate timely, important information about service status. For more information, see Console Announcements.

1. Use a search engine

For common issues, someone else has likely asked this question in the past. You can use scoped search to look for answers in our documentation and our forum platforms – Cloud Customer Connect and Stack Overflow. To perform a scoped search, go to your favorite search engine and specify the site URLs along with your specific search terms, as follows:

<Your Search Terms> (site:docs.cloud.oracle.com/iaas OR site:cloudcustomerconnect.oracle.com OR site:stackoverflow.com)

2. Post a question to our forums

If you can’t find an answer to your question through search, submit a new question to one of the forums we support. This option is available to all customers.

Cloud Customer Connect

For any issue related to Oracle Cloud Infrastructure, including provisioning of new resources, Console issues, identity, networking, documentation, storage, database, Edge services, or other solutions, you can post a question to Cloud Customer Connect at:

https://cloudcustomerconnect.oracle.com/resources/9c8fa8f96f/summary

If you are using only Always Free resources or using a Free Tier account, use Cloud Customer Connect for support queries.

Stack Overflow

If you are creating an application that integrates with Oracle Cloud Infrastructure APIs, endpoints, or services, you can also use Stack Overflow forums for development-related questions. Tag your questions with oracle-cloud-infrastructure, as follows:

https://stackoverflow.com/questions/tagged/oracle-cloud-infrastructure
3. Open a support service request

This option is only available to paid accounts.

To open a support request for the first time, you must complete the steps outlined in the procedure Using Oracle Support for the First Time on page 147.

Note:

Customers using only Always Free resources and customers using Free Tier accounts are not eligible for Oracle Support. You must upgrade to a paid account to access Oracle Support. If you need support, post a question to Cloud Customer Connect.

If the preceding options did not resolve your issue and you need to talk to someone, you can create a support request. In addition to support for technical issues, you can open support requests if you need to:

- Reset the password or unlock the account for the tenancy administrator
- Add or change a tenancy administrator
- Request a service limit increase
- Request a root cause analysis (RCA)

Creating a Service Request Using the Console

Caution:

Avoid entering confidential information when assigning descriptions, tags, or friendly names to your cloud resources through the Oracle Cloud Infrastructure Console, API, or CLI.

To create a support request

1. Open the Help menu (), go to Support, and click Create support request.
2. Enter the following:
 - Issue summary: Enter a title that summarizes your issue.
 - Describe your issue: Provide a brief overview of your issue.
 - Include all the information that support needs to route and respond to your request. For example, "I am unable to connect to my Compute instance."
 - Include troubleshooting steps taken and any available test results.
 - For many Oracle Cloud Infrastructure issues, you need to include the OCID (Oracle Cloud Identifier) for each resource you need help with. See Locating Oracle Cloud Infrastructure IDs on page 144 for instructions explaining how to locating these.
 - Select the severity level for this request.
3. Click Create Request.

To request a root cause analysis (RCA)

To request a root cause analysis for an outage, create a support request and include Root Cause Analysis (RCA) Request in the Issue Summary field.

Tip:

Use the Oracle Cloud Infrastructure Status page to view the current status of services or to sign up for emails that notify you about outages.

To view all support requests

- Open the Help menu (), go to Support and click View support requests.

To add a comment to a support request
1. Open the Help menu (), go to Support and click View support requests.
 A list of support requests appears.
2. Click the name of the support request on which you want to comment.
3. Under Comments, click Add Comment.
 The Add Comment dialog appears.
4. Type your comment, and then click Add Comment.

To close a support request
1. Open the Help menu (), go to Support and click View support requests.
 A list of support requests appears.
2. Click the name of the support request you want to close.
3. Click Request to Close.
 The Request to Close dialog appears.
4. Enter the reason for requesting to close the ticket, and then click Request to close.

Creating a Service Request Using the API

For information about using the API and signing requests, see REST APIs and Security Credentials. For information about SDKs, see Software Development Kits and Command Line Interface.

Use the following APIs to manage support requests:

- CreateIncident
- GetIncident
- ListIncidentResourceTypes
- ListIncidents
- GetStatus
- UpdateIncident
- ValidateUser

Locating Oracle Cloud Infrastructure IDs

Use the following tips to help you locate identifiers you might be asked to provide.

Finding Your Customer Support Identifier (CSI)

The Customer Support Identifier (CSI) number is generated after you purchase Oracle Cloud services. This number can be found in several places, including in your contract document and also on your tenancy details page. You’ll need the CSI number to register and log support requests in My Oracle Support (MOS).

To find your CSI number:
1. Open the navigation menu, under Governance and Administration, go to Administration and click Tenancy Details.

2. The CSI number is shown under Tenancy Information.

Finding Your Tenancy OCID (Oracle Cloud Identifier)

Get the tenancy OCID from the Oracle Cloud Infrastructure Console on the Tenancy Details page:

1. Open the Profile menu (-profile) and click Tenancy: <your_tenancy_name>.
2. The tenancy OCID is shown under **Tenancy Information**. Click **Copy** to copy it to your clipboard.

Finding the OCID of a Compartment

The OCID (Oracle Cloud Identifier) of a resource is displayed when you view the resource in the Console, on the resource details page.

For example, to get the OCID for a Compute instance:

1. Open the navigation menu. Under **Governance and Administration**, go to **Identity** and click **Compartments**. A list of the compartments in your tenancy is displayed. A shortened version of the OCID is displayed next to each compartment.

2. Click the shortened OCID string to view the entire value in a pop-up. Click **Copy** to copy the OCID to your clipboard. You can then paste it into the service request form field.

Finding the OCID of a Resource

The OCID (Oracle Cloud Identifier) of a resource is displayed when you view the resource in the Console, both in the list view and on the details page.

For example, to get the OCID for a compute instance:

1. Open the Console.
2. Select the **Compartment** to which the instance belongs from the list on the left side of the page.

 Note that you must have appropriate permissions in a compartment to view resources.

3. Open the navigation menu. Under **Core Infrastructure**, go to **Compute** and click **Instances**. A list of instances in the selected compartment is displayed.

4. Click the instance that you're interested in.

 A shortened version of the OCID is displayed on the instance details page.
5. Click **Copy** to copy the OCID to your clipboard. You can then paste it into the service request form field.

Finding Your opc-request-id in the Console

To locate the `opc-request-id` value when you are using the Oracle Cloud Infrastructure Console, you must first access the developer tools in the browser in which you are running the Console. Depending on your browser, this is called either Developer Tools or Web Console and can be opened by clicking **F12**. In Safari on a Mac, it's called the Web Inspector.

1. Open your browser's developer tools by clicking **F12** (in Safari on Mac, click **Option + Cmd + i**).
2. Select the **Network** tab, then filter on **XHR**.

 Note:
 Different browsers present filtering options in different ways. Firefox presents an **XHR** filtering button on the **Network** tab UI. Internet Explorer and Edge provide a filter icon with the label **Content type**, which you click to expose an **XHR** filter.

3. Select results that return a 500 error to view the request details.
4. In the request details pane, click the **Headers** tab.
5. Locate and copy both the `opc-request-id` and `date` values and include them in your support ticket.

Using Oracle Support for the First Time

Before you can create Oracle Support requests either with My Oracle Support or in the Console, you need to configure and link your user accounts. The following sections guide you through the steps required to enable your user account to create support requests.

1. **Creating an Oracle Single Sign On (SSO) Account** on page 147
2. **Third-Party Federation and Provisioning** on page 148
3. **Linking an IAM User to a My Oracle Support Account** on page 148
4. **Linking Other Identity Providers**
5. **Registering your CSI for Oracle Cloud Infrastructure** on page 149

To complete steps one and five, you need to have your Customer Support Identifier (CSI) number available. If you need to locate that number, see **Finding Your Customer Support Identifier (CSI)** on page 149.

Creating an Oracle Single Sign On (SSO) Account

Before you can create service requests with My Oracle Support, you need to have an Oracle Single Sign On (SSO) account and register your Customer Support Identifier (CSI) with My Oracle Support. If you already have an Oracle SSO account, use your existing account and go directly to **Linking an IAM User to a My Oracle Support Account** on page 148.

Tip:

Before you begin this procedure, have your CSI number available. Not sure what that number is or how to locate it? See **Finding Your Customer Support Identifier (CSI)** on page 149.

To request an SSO account and register with My Oracle Support:

1. To create your Oracle Single Sign On (SSO) account, go to the My Oracle Support **Create Your Oracle Account** page.
2. Enter your company email address in the **Email address** field, complete the rest of the form, and then click **Create Account**. A verification email is generated.

Important:
If you use an identity provider other than IAM, IDCS, or Okta, this email address must match the user name that you use with your identity provider.

3. Check your email account for an email from Oracle asking you to verify your email address.
4. Open the email and click Verify Email Address.
5. Sign in with the credentials you just set up.
6. At sign in, you are prompted to enter a Note to the Approver and the Support Identifier (your CSI).
7. Click Request Access.
8. Enter the first five characters of the name of the organization that owns the Customer Support Identifier (listed in the Welcome letter), and then click Validate. The support identifier appears in the table.
9. Click Next.
10. Enter your contact information and click Next.
11. Accept the terms and click Next.

If you are the first person requesting this support identifier, the status of the request is pending until you receive approval from the Customer User Administrator (CUA) or from Oracle Support.

Third-Party Federation and Provisioning

Oracle Cloud Infrastructure supports federation with Microsoft Active Directory via Active Directory Federation Services (AD FS), Microsoft Azure Active Directory, Okta, and other identity providers that support the Security Assertion Markup Language (SAML) 2.0 protocol. For more details, see Federating with Identity Providers.

When you use third-party federation for your identity provider, you must use SCIM (System for Cross-domain Identity Management) to provision federated users. Using a SCIM client to provision users in Oracle Cloud Infrastructure allows users to access support in the Console. SCIM is an IETF standard protocol that enables user provisioning across identity systems. Oracle Cloud Infrastructure hosts a SCIM endpoint for provisioning federated users into Oracle Cloud Infrastructure.

For details about how to use SCIM to provision federated users, see User Provisioning for Federated Users. The steps for using a SCIM endpoint to provision federated users into Oracle Cloud Infrastructure vary depending on your identity provider. In all cases, you need to provide the SCIM base URL and appropriate credentials in your identity provider's user provisioning tab or window. The credentials vary depending on your identity provider.

The SCIM base URL follows the convention:

https://<home-region>.scim.oci.oraclecloud.com/v2

where the <home_region> variable is your Oracle Cloud Infrastructure tenancy's home region.

For example, if your home region is US East (Ashburn) enter:

https://us-ashburn-1.scim.oci.oraclecloud.com/v2

If your IdP is Okta and you do not have an existing federation with Okta, follow the instructions in the white paper, Oracle Cloud Infrastructure Okta Configuration for Federation and Provisioning. This paper includes instructions for both setting up your federation and provisioning with SCIM.

Linking an IAM User to a My Oracle Support Account

To file support requests directly from the Console, each user must link their IAM user account with their My Oracle Support (MOS) account. You only need to complete this step once. For information about IAM user accounts, see Request and Manage Free Oracle Cloud Promotions on page 18 and Signing In to the Console on page 36.

Prerequisites

Before you can create this link, you must have a My Oracle Support account. For information on setting up a My Oracle Support account, see Creating an Oracle Single Sign On (SSO) Account on page 147.
To link a user to their My Oracle Support account

1. Open the navigation menu. Under Governance and Administration, go to Identity and click Users. A list of the users in your tenancy is displayed.
2. Click the user you want to update. The user's details are displayed.
3. Click Link Support Account. The Oracle account sign in page prompts you to enter your Oracle credentials.
4. Enter the User name and Password of the Oracle support account that you want to link to this user, and then click Sign in. The IAM user account is linked to the Oracle support account. The email address associated with the support account is displayed in the user details in the field My Oracle Support account.

Registering your CSI for Oracle Cloud Infrastructure

Before a user can submit service requests for a tenancy, their My Oracle Support account must be associated to their tenancy CSI number. If you previously registered for My Oracle Support but need to add the CSI for Oracle Cloud Infrastructure, follow these steps. If you already added the CSI for Oracle Cloud Infrastructure, skip this section.

1. Go to https://support.oracle.com and sign in.
2. Navigate to the My Account page: Go to your user name at the top of the page, open the menu, and then click My Account.
3. The Support Identifiers region displays the accounts that your user name is associated with.
4. Click Request Access.
5. Enter a Note to the Approver and then enter the Support Identifier (your CSI).
6. Enter the first five characters of the name of the organization that owns the Customer Support Identifier (listed in the Welcome letter), and then click Validate. The support identifier appears in the table.
7. Click Next.
8. Enter your contact information and accept the terms. Click Next.

The status of the request is pending until you receive approval from the Customer User Administrator (CUA).

For more information about signing in and using My Oracle Support, see Registration, Sign In, and Accessibility Options in My Oracle Support Help.

Finding Your Customer Support Identifier (CSI)

The following steps explain how to locate your CSI number.

The Customer Support Identifier (CSI) number is generated after you purchase Oracle Cloud services. This number can be found in several places, including in your contract document and also on your tenancy details page. You’ll need the CSI number to register and log support requests in My Oracle Support (MOS).

To find your CSI number:
1. Open the navigation menu, under Governance and Administration, go to Administration and click Tenancy Details.

2. The CSI number is shown under Tenancy Information.
I’m not seeing Platform Services or Classic Services on my navigation menu. What happened?

Make sure that you are signing in with your Oracle Identity Cloud Service login credentials. To ensure that you sign in through IDCS:

2. Enter your tenancy name and click Next. The IDCS sign in page is displayed.
3. Enter your username and password and click Sign In.
4. On the Console, open the navigation menu. If your account has access to Platform or Classic services, you'll see them displayed on the menu under More Oracle Cloud Services. See also Navigating to More Oracle Cloud Services from the Console on page 43.

How do I get to my IDCS console?

To access the IDCS console:

1. Open the navigation menu. Under Governance and Administration, go to Identity and click Federation. The list of identity providers is displayed. OracleIdentityCloudService is displayed in the list of identity providers, with details about the federation.
2. Click the link for Oracle Identity Cloud Service Console. An example is shown in the following screenshot.

The Oracle Identity Cloud service console opens in a new window.

My team needs reports that were only available from My Services. How can I get back to the old dashboard?

You can access the My Services dashboard by using this URL:

http://myservices-<tenancyname>.console.oraclecloud.com/mycloud/cloudportal/dashboard

where you replace <tenancyname> with your company’s tenancy name.
Frequently Asked Questions

Where can I find more information about the changes to other task workflows and navigation?

See Task Mapping from My Services.

What URLs can I use to sign in to the Oracle Cloud Infrastructure Console?

You can use any of the regional Console URLs to sign in. These are:

- https://console.ap-chuncheon-1.oraclecloud.com
- https://console.ap-hyderabad-1.oraclecloud.com
- https://console.ap-melbourne-1.oraclecloud.com
- https://console.ap-mumbai-1.oraclecloud.com
- https://console.ap-osaka-1.oraclecloud.com
- https://console.ap-seoul-1.oraclecloud.com
- https://console.ap-sydney-1.oraclecloud.com
- https://console.ap-tokyo-1.oraclecloud.com
- https://console.ca-montreal-1.oraclecloud.com
- https://console.ca-toronto-1.oraclecloud.com
- https://console.eu-amsterdam-1.oraclecloud.com
- https://console.eu-frankfurt-1.oraclecloud.com
- https://console.eu-zurich-1.oraclecloud.com
- https://console.me-dubai-1.oraclecloud.com
- https://console.me-jeddah-1.oraclecloud.com
- https://console.sa-sao paulo-1.oraclecloud.com
- https://console.uk-london-1.oraclecloud.com
- https://console.us-ashburn-1.oraclecloud.com
- https://console.us-phoenix-1.oraclecloud.com
- https://console.us-sanjose-1.oraclecloud.com

On the sign-in page, you are prompted to enter your cloud tenant, your user name, and your password. Once authenticated, you are directed to a region your tenancy is subscribed to. You can switch to other regions you are subscribed to by using the region selector at the top of the Console.

How do I find my tenancy home region?

To find out what your home region is:

Open the Profile menu (👤) and click Tenancy: <your_tenancy_name>.

The Tenancy details page shows your Home Region.

What are my Oracle Cloud Infrastructure account service limits (or resource quotas) and can I request more?

You can view your tenancy's service limits in the Console and request an increase. For more information and the default tenancy limits, see Service Limits.
Where do I find information about what APIs are available?

Oracle Cloud Infrastructure provides a set of APIs for the core services (network, compute, block volumes) as well as for the IAM and the Object Storage services.

See "API Requests" in the Oracle Cloud Infrastructure User Guide.

What browsers can I use with the Console?

Oracle Cloud Infrastructure supports the following browsers and versions:

- Google Chrome 69 or later
- Safari 12.1 or later
- Firefox 62 or later

Why can't I sign in using Firefox?

If you are having trouble signing in to the Console using the Firefox browser, it might be due to one of the following conditions:

- You are in Private Browsing mode. The Console does not support Private Browsing mode. Open a new session of Firefox with Private Browsing turned off.
- You are not on the latest version of Firefox. Upgrade to the latest version. To check to see if you are on the latest version, follow these instructions: https://support.mozilla.org/en-US/kb/find-what-version-firefox-you-are-using
- Your Firefox user profile is corrupted. To fix this issue:
 1. Upgrade to the latest version of Firefox.
 2. Create a new user profile and open Firefox with the new profile. See Mozilla Support for instructions on how to create a new user profile: https://support.mozilla.org/en-US/kb/profile-manager-create-and-remove-firefox-profiles

If none of the above resolves your issue, contact Oracle Support. In your problem description, make sure you specify whether you are using Firefox or Firefox ESR.

How do I know if I am in Private Browsing mode?

When you are in Private Browsing mode, a mask icon is displayed in the upper right corner of your Firefox window.

How do I change my password?

Note:
For Federated Users

If your company uses an identity provider (other than Oracle Identity Cloud Service) to manage user logins and passwords, you can't use the Console to update your password. You do that with your identity provider.

1. Sign in to the Console using the Oracle Cloud Infrastructure Username and Password.
2. After you sign in, go to the top-right corner of the Console, open the **Profile** menu (Ξ) and then click **Change Password**.

3. Enter the current password.
4. Follow the prompts to enter the new password, and then click **Save New Password**.

How do I reset my password if I forget it?

If you added an email address to your user settings, you can use the **Forgot Password** link on the sign-in page to have a temporary password sent to you. If you don't have an email address included with your user details, then an administrator must reset your password. Contact your administrator to reset your password for you. Your administrator will give you a temporary password that is good for 7 days. If you do not use it in 7 days, the password will expire and you'll need to get your administrator to create a new one-time password for you.

If you are the default or tenant administrator for your site and you forgot your password, contact Oracle Support. For tips on filing a service request, see Getting Help and Contacting Support on page 142.

How do I get support?

See Getting Help and Contacting Support on page 142. If this is your first time using Oracle Support, see Using Oracle Support for the First Time on page 147.

Where do I find my Tenancy OCID?

Get the tenancy OCID from the Oracle Cloud Infrastructure Console on the **Tenancy Details** page:

1. Open the **Profile** menu (Ξ) and click **Tenancy: <your_tenancy_name>**.
2. The tenancy OCID is shown under Tenancy Information. Click Copy to copy it to your clipboard.
Glossary

A

AD-specific subnet

A subnet that is specific to a particular availability domain (AD). Historically all subnets were AD-specific. Compare with regional subnets, which Oracle recommends over AD-specific subnets.

alarm

The trigger rule and query to evaluate and related configuration, such as notification details to use when the trigger is breached. Alarms passively monitor your cloud resources using metrics in Monitoring.

API key

A credential for securing requests to the Oracle Cloud Infrastructure REST API.

application (Application Migration)

A combination of the artifacts and configuration deployed on one or more service instances running in the source environment.

attach

Link a volume and instance together. Allows an instance to connect and mount the volume as a hard drive.

Attribute

An attribute describes a data item with a name and data type. For example, a column in a table or a field in a file.

auth token

Oracle Cloud Infrastructure-generated token you use to authenticate with third-party APIs, such as a Swift client.

availability domain

One or more isolated, fault-tolerant Oracle data centers that host cloud resources such as instances, volumes, and subnets. A region contains one or more availability domains.

B

backend set

A logical entity defined by a list of backend servers, a load balancing policy, and a health check policy.

bare metal IaaS

A cloud infrastructure that allows you to utilize hosted physical hardware, as opposed to traditional software-based virtual machines, ensuring a high level of security and performance.

block storage volume

A virtual disk that provides persistent storage space for instances in the cloud.

bucket

A logical container for storing objects.
Glossary

C

Category
A category is created in a glossary to group logically related business terms. You can create a category within a category to group your terms.

CHAP
Stands for Challenge-Handshake-Authentication-Protocol. It is a security protocol used by iSCSI for authentication between a volume and an instance.

Cloud Block Storage
A service that allows you to add block storage volumes to an instance in order to expand the available storage on that resource.

cloud network
A virtual version of a traditional network—including CIDRs, subnets, route tables, and gateways—on which your instance runs.

cluster network
A pool of high performance computing (HPC) instances that are connected with a high-bandwidth, ultra low-latency network.

compartment
A collection of related resources that can be accessed only by certain groups that have been given permission by an administrator in your organization.

Compute
A service that lets you provision and manage compute hosts, known as instances.

connect
Make an attached volume usable by an instance's guest OS.

CPE
The router at the edge of your on-premises network. The Networking service also has an object called a CPE, which is a virtual representation of your edge router. You create that object when setting up VPN Connect (an IPSec VPN) between Oracle and your on-premises network.

CPE Configuration Helper
A feature of the Oracle Console that generates information that a network engineer can use to configure the customer-premises equipment (CPE) at their end of a VPN connection.

cross-connect
Used with Oracle Cloud Infrastructure FastConnect, specifically if you're using a third-party provider or colocated with Oracle in a FastConnect location. A cross-connect is the physical cable connecting your existing network to Oracle in the FastConnect location.

cross-connect group
Used with Oracle Cloud Infrastructure FastConnect, specifically if you're using a third-party provider or colocated with Oracle in a FastConnect location. A cross-connect group is a link aggregation group (LAG) that contains at least one cross-connect.

customer-premises equipment
The router at the edge of your on-premises network. The Networking service also has an object called a CPE, which is a virtual representation of your edge router. You create that object when setting up VPN Connect (an IPSec VPN) between Oracle and your on-premises network.
D

Data Asset (Data Catalog and Data Integration)

Represents a data source, such as a database, an object store, a file or document store, a message queue, or an application.

Data Catalog Tags

Tags are free-form labels or keywords you create to be able to logically identify data objects. Tags help in metadata classification and discovery. You create tags for data assets, data entities, and attributes. Using tags, you can search for all data objects tagged with a specific tag name.

Data Entity (Data Catalog and Data Integration)

A data entity is a collection of data such as a database table or view, or a single logical file and normally has many attributes that describe its data.

data point (Monitoring service)

A timestamp-value pair for the specified metric. Example: 2018-05-10T22:19:00Z, 10.4

DB System

A dedicated bare metal instance running Oracle Linux, optimized for running one or more Oracle databases. A DB System is a Database Service resource.

DHCP options

Configuration information that is automatically provided to the instances when they boot up.

dimension (Monitoring service)

A qualifier provided in a metric definition. Example: Resource identifier (resourceId), provided in the definitions of oci_computeagent metrics.

display name

A friendly name or description that helps you easily identify the resource.

DRG

An optional virtual router that you can add to your VCN to provide a path for private network traffic between your VCN and on-premises network.

DRG attachment

When you attach a dynamic routing gateway (DRG) to a virtual cloud network (VCN), the result is a DRG attachment object. To detach the DRG, you delete that attachment object.

drift (Resource Manager)

Difference between the actual, real-world state of your infrastructure and the stack's last executed configuration.

dynamic group

A special type of IAM group that contains instances that match rules that you define (thus the membership can change dynamically as matching instances are terminated or launched). These instances act as "principal" actors and can make API calls to Oracle Cloud Infrastructure services according to IAM policies that you write for the dynamic group.

dynamic routing gateway

An optional virtual router that you can add to your VCN to provide a path for private network traffic between your VCN and on-premises network.
E

ephemeral public IP
A public IP address (and related properties) that is temporary and exists for the life of the instance it's assigned to. It can be assigned only to the primary private IP on a VNIC. Compare with reserved public IP.

Export
Controls how file systems are accessed by NFS clients when they connect to a mount target.

Export Options
A set of parameters that specify the level of access granted to NFS clients when they connect to a mount target.

F

FastConnect
FastConnect provides an easy way to create a dedicated, private connection between your data center or existing network and Oracle Cloud Infrastructure. FastConnect provides higher-bandwidth options, and a more reliable and consistent networking experience compared to internet-based connections.

FastConnect location
A specific data center where you can connect to Oracle Cloud Infrastructure by using FastConnect.

fault domain
A logical grouping of hardware and infrastructure within an availability domain to provide isolation of resources in case of hardware failure or unexpected software changes.

File System
An organized system of directories and folders where data is stored.

frequency (Monitoring service)
The time period between each posted raw data point for a given metric. (Raw data points are posted by the metric namespace to the Monitoring service.)

G

Glossary
A glossary is a collection of business concepts in your company. Glossary constitutes of categories and business terms.

group
A collection of users who all need a particular type of access to a set of resources or compartment.

guest operating system
An operating system installed on a cloud instance.

guest OS
An operating system installed on a cloud instance.

H

Harvest
Process that extracts technical metadata from your connected data sources into your Data Catalog repository.
health check
A test to confirm the availability of backend servers.

I
IaaS
A service that allows customers to rapidly scale up or down their computer infrastructure (computing, storage, or network).

IAM
The service for controlling authentication and authorization of users who need to use your cloud resources.

Identity and Access Management Service
The service for controlling authentication and authorization of users who need to use your cloud resources. Also called "IAM".

identity provider
A service that provides identifying credentials and authentication for federated users.

IdP
Short for "identity provider", which is a service that provides identifying credentials and authentication for federated users.

image
A template of a virtual hard drive that determines the operating system and other software for an instance.

Infrastructure-as-a-Service
A service that allows customers to rapidly scale up or down their computer infrastructure (computing, storage, or network).

instance
A bare metal or virtual machine (VM) compute host. The image used to launch the instance determines its operating system and other software. The shape specified during the launch process determines the number of CPUs and memory allocated to the instance.

instance wallet
An Autonomous Database instance wallet contains only credentials and keys for a single database instance.

internet gateway
An optional virtual router that you can add to your VCN. It provides a path for network traffic between your VCN and the internet.

interval (Monitoring service)
The time window used to convert the given set of raw data points. Example: 5 minutes

IPSec connection
The secure connection between a dynamic routing gateway (DRG) and customer-premises equipment (CPE), consisting of multiple IPSec tunnels. The IPSec connection is one of the components forming a site-to-site VPN between a virtual cloud network (VCN) and your on-premises network.

IPv6
An object that contains an IPv6 address and related properties. Currently IPv6 addressing is supported only in the US Government Cloud. Only instances in IPv6-enabled VCNs and IPv6-enabled subnets can have IPv6 addresses.
Glossary

IQN
A unique ID assigned to an iSCSI device. Used when connecting a volume to an instance.

iSCSI
A TCP/IP based standard used for communication between a volume and attached instance.

iSCSI Qualified Name
A unique ID assigned to an iSCSI device. Used when connecting a volume to an instance.

K

key pair
A security mechanism consisting of a public key and a private key. Required (for example) for Secure Shell (SSH) access to an instance.

L

listener
A security mechanism consisting of a public key and a private key. Required (for example) for Secure Shell (SSH) access to an instance.

local peering gateway
A component on a VCN for routing traffic to a locally peered VCN. "Local" peering means the two VCNs are in the same region. Compare with a remote peering connection.

local VCN peering
The process of connecting two VCNs in the same region so that their resources can communicate without routing the traffic over the internet or through your on-premises network.

LPG
A component on a VCN for routing traffic to a locally peered VCN. "Local" peering means the two VCNs are in the same region. Compare with a remote peering connection.

M

message (Notifications and Monitoring services)
An alert published to all subscriptions in the specified topic. Each message is delivered at least once per subscription.

metric
(Monitoring service) A measurement related to health, capacity, or performance of a given resource.
Example: CpuUtilization

metric definition (Monitoring service)
A set of references, qualifiers, and other information provided by a metric namespace for a given metric.

metric namespace (Monitoring service)
Indicator of the resource, service, or application that emits the metric. Provided in the metric definition.
Example: oci_computeagent

metric stream (Monitoring service)
An individual set of aggregated data for a metric. Typically specific to a resource.
migration (Application Migration)

The end-to-end workflow of moving an application from a source environment to Oracle Cloud Infrastructure.

Monitoring Query Language (Monitoring service)

The syntax used for metric and alarm queries.

Mount Point

A directory from which a client may access a remote File Storage Service file system.

Mount Target

An NFS endpoint that allows a file system to be accessed by clients.

MQL (Monitoring service)

Monitoring Query Language. The syntax used for metric and alarm queries. In the Console, MQL syntax of queries is displayed in Advanced Mode.

N

NAT gateway

An optional virtual router that you can add to your VCN to perform Network Address Translation (NAT). A NAT gateway gives cloud resources without public IP addresses access to the internet without exposing those resources to incoming internet connections.

network security group

One method for implementing security rules in a VCN. A network security group consists of a set of resources (VNICs or resources with VNICs) and security rules that apply to those resources. See also security rules and security lists.

network source

A group of IP addresses that can be used in policy to restrict access.

notification destination (Monitoring service)

Protocol and other details for sending messages when the alarm transitions to another state, such as from "OK" to "FIRING."

NSG

One method for implementing security rules in a VCN. A network security group consists of a set of resources (VNICs or resources with VNICs) and security rules that apply to those resources. See also security rules and security lists.

O

object

Any type of data, regardless of content type, is stored as an object. The object is composed of the object itself and metadata about the object. Each object is stored in a bucket.

OCID

An Oracle-assigned unique ID called an Oracle Cloud Identifier (OCID). This ID is included as part of the resource's information in both the Console and API.

one-time password

A single-use Console password that Oracle assigns to a new user, or to an existing user who requested a password reset.
Oracle Cloud Identifier

An Oracle-assigned unique ID called an Oracle Cloud Identifier (OCID). This ID is included as part of the resource's information in both the Console and API.

OTP

A single-use Console password that Oracle assigns to a new user, or to an existing user who requested a password reset.

P policy

An IAM document that specifies who has what type of access to your resources. It is used in different ways: to mean an individual statement written in the policy language; to mean a collection of statements in a single, named "policy" document (which has an Oracle Cloud ID (OCID) assigned to it); and to mean the overall body of policies your organization uses to control access to resources.

policy statement

Policies can contain one or more individual statements. Each statement gives a group a certain type of access to certain resources in a particular compartment.

primary IP

The private IP that is automatically created and assigned to a VNIC during creation.

primary VNIC

The VNIC that is automatically created and attached to an instance during launch.

private IP

An object that contains a private IPv4 address and related properties such as a hostname for DNS. Each instance automatically comes with a primary private IP, and you can add secondary ones.

private peering

One of the ways to use FastConnect. Private peering lets you extend your existing infrastructure into a virtual cloud network (VCN) in Oracle Cloud Infrastructure (for example, to implement a hybrid cloud, or a lift and shift scenario). Communication across the connection is with IPv4 private addresses (typically RFC 1918).

private subnet

A subnet in which instances are not allowed to have public IP addresses.

private virtual circuit

A FastConnect virtual circuit that supports private peering.

public IP

An object that contains a public IP address and related properties. You control whether each private IP on an instance has an assigned public IP. There are two types: reserved public IPs and ephemeral public IPs.

public peering

One of the way to use FastConnect. Public peering lets your on-premises network access public services in Oracle Cloud Infrastructure without using the internet. For example, Object Storage, the Oracle Cloud Infrastructure Console and APIs, or public load balancers in your VCN. Communication across the connection is with IPv4 public IP addresses. Without FastConnect, the traffic destined for public IP addresses would be routed over the internet. With FastConnect, that traffic goes over your private physical connection.

public subnet

A subnet in which instances are allowed to have public IP addresses. When you launch an instance in a public subnet, you specify whether the instance should have a public IP address.
public virtual circuit

A FastConnect virtual circuit that supports public peering.

Q

query (Monitoring service)

The expression to evaluate for returning aggregated data. A valid query includes a metric, statistic, and interval. In the Console, you can view a query in Basic Mode or Advanced Mode. The latter displays the Monitoring Query Language (MQL) syntax.

R

realm

A logical collection of regions. Realms are isolated from each other and do not share any data. Your tenancy exists in a single realm and can access the regions that belong to that realm.

region

A collection of availability domains located in a single geographic location.

regional subnet

A subnet that spans all availability domains (ADs) in the region. Oracle recommends using regional subnets because they are more flexible and make it easier to implement failover across ADs. Compare with AD-specific subnets.

regional wallet

An Autonomous Database regional wallet contains credentials and keys for all Autonomous Databases in a specified region.

remote peering connection

A component on a dynamic routing gateway (DRG) for routing traffic to a remotely peered VCN. "Remote" peering means the two VCNs are in different regions. Compare with a local peering gateway.

remote VCN peering

The process of connecting two VCNs in different regions so that their resources can communicate without routing their traffic over the internet or through your on-premises network.

reserved public IP

A public IP address (and related properties) that you create in your tenancy and assign to your instances in a given region as you like. It persists in your tenancy until you delete it. It can be assigned to any private IP on a given VNIC, not just the primary private IP. Compare with ephemeral private IP.

resolution (Monitoring service)

The period between time windows, or the regularity at which time windows shift. Example: 1 minute

resource

The cloud objects that your company’s employees create and use when interacting with Oracle Cloud Infrastructure.

route table

Virtual route table for your VCN that provides mapping for the traffic from subnets via gateways to external destinations.

RPC

A component on a dynamic routing gateway (DRG) for routing traffic to a remotely peered VCN. "Remote" peering means the two VCNs are in different regions. Compare with a local peering gateway.
Glossary

S

secondary IP address
An additional private IP you've added to a VNIC on an instance. Each VNIC automatically comes with a primary private IP that cannot be removed.

secondary VNIC
An additional VNIC you've added to an instance. Each instance automatically comes with a primary VNIC that cannot be removed.

security list
One method for implementing security rules in a VCN. A security list consists of security rules that apply to all resources in any subnet that uses the security list. See also security rules and network security groups.

security rule
Virtual firewall rules for your VCN. Each security rule specifies a type of ingress or egress traffic allowed in or out of a resource or VNIC. Also see network security groups and security lists.

service gateway
An optional virtual router that you can add to your VCN. The gateway enables on-premises hosts or VCN hosts to privately access Oracle services (such as Object Storage and Autonomous Database) without exposing the resources to the public internet.

shape
A template that determines the number of CPUs, amount of memory, and other resources that are allocated to an instance.

source (Application Migration)
The environment from which the application is being migrated.

statement
Policies can contain one or more individual statements. Each statement gives a group a certain type of access to certain resources in a particular compartment.

statistic
The aggregation function applied to the given set of raw data points. Example: SUM

subnet
Subdivision of your VCN used to separate your network into multiple smaller, distinct networks.

subscription (Notifications service)
An endpoint for a topic; typically a URL or email address. Published messages are sent to each subscription for a topic.

suppression (Monitoring service)
A configuration to avoid publishing messages during the specified time range. Useful for suspending alarm notifications during system maintenance.

Swift password
(Deprecated. Use an auth token to authenticate with your Swift client.) Swift is the OpenStack object store service. A Swift password enables you to use an existing Swift client with Oracle Cloud Infrastructure Object Storage.
T

tenancy
The root compartment that contains all of your organization’s compartments and other Oracle Cloud Infrastructure cloud resources.

tenant
The name assigned to a particular company's or organization's overall environment. Users provide their tenant when signing in to the Console.

Term
Terms are the actual definitions of business concepts as agreed upon by different business stakeholders in your company. You use terms to organize your data entities and attributes.

topic (Notifications service)
A communication channel for sending messages to the subscriptions in the topic.

transit routing
A network setup in which your on-premises network uses a connected virtual cloud network (VCN) to reach Oracle resources or services beyond that VCN. You connect the on-premises network to the VCN with a FastConnect private virtual circuit or VPN Connect, and then configure the VCN routing so that traffic transits through the VCN to its destination beyond the VCN. You can use transit routing to access multiple VCNs from your on-premises network over a single FastConnect or VPN Connect. Or you can use it to give your on-premises network private access to Oracle services so that on-premises hosts use their private IP addresses and the traffic does not go over the internet.

trigger rule (Monitoring service)
The condition that must be met for the alarm to be in the firing state. A trigger rule can be based on a threshold or absence of a metric.

U
 user
An individual employee or system that needs to manage or use your company's Oracle Cloud Infrastructure resources.

V

VCN
A virtual version of a traditional network—including CIDRs, subnets, route tables, and gateways—on which your instance runs.

virtual circuit
Used with Oracle Cloud Infrastructure FastConnect. An isolated network path that runs over one or more physical network connections to provide a single, logical connection between the edge of your existing network and Oracle Cloud Infrastructure.

virtual cloud network
A virtual version of a traditional network—including CIDRs, subnets, route tables, and gateways—on which your instance runs.

virtual machine
A software-based emulation of a full computer that runs within a physical host computer.
virtual network interface card

A VNIC enables an instance to connect to a VCN and determines how the instance connects with endpoints inside and outside the VCN. Each instance automatically comes with a primary VNIC, and you can add secondary ones. Other types of cloud resources also automatically get a VNIC upon creation (examples: load balancers, DB systems).

VM

A software-based emulation of a full computer that runs within a physical host computer.

VNIC

A VNIC enables an instance to connect to a VCN and determines how the instance connects with endpoints inside and outside the VCN. Each instance automatically comes with a primary VNIC, and you can add secondary ones. Other types of cloud resources also automatically get a VNIC upon creation (examples: load balancers, DB systems).

volume

A detachable block storage device that allows you to dynamically expand the storage capacity of an instance.

W

work request

An object that reports on the current state of an asynchronous service request.