The software described in this documentation is either in Extended Support or Sustaining Support. See https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf for more information.
Oracle recommends that you upgrade the software described by this documentation as soon as possible.

7.4 About Targeted and Multilevel Security Policies

An SELinux policy describes the access permissions for all users, programs, processes, and files, and for the devices upon which they act. You can configure SELinux to implement either Targeted Policy or Multilevel Security (MLS) Policy.

Targeted Policy applies access controls to a limited number of processes that are believed to be most likely to be the targets of an attack on the system. Targeted processes run in their own SELinux domain, known as a confined domain, which restricts access to files that an attacker could exploit. If SELinux detects that a targeted process is trying to access resources outside the confined domain, it denies access to those resources and logs the denial. Only specific services run in confined domains. Examples are services that listen on a network for client requests, such as httpd, named, and sshd, and processes that run as root to perform tasks on behalf of users, such as passwd. Other processes, including most user processes, run in an unconfined domain where only DAC rules apply. If an attack compromises an unconfined process, SELinux does not prevent access to system resources and data.

Multilevel Security (MLS) Policy applies access controls to multiple levels of processes with each level having different rules for user access. Users cannot obtain access to information if they do not have the correct authorization to run a process at a specific level. In SELinux, MLS implements the Bell–LaPadula (BLP) model for system security, which applies labels to files, processes and other system objects to control the flow of information between security levels. In a typical implementation, the labels for security levels might range from the most secure, top secret, through secret, and classified, to the least secure, unclassified. For example, under MLS, you might configure a program labelled secret to be able to write to a file that is labelled top secret, but not to be able to read from it. Similarly, you would permit the same program to read from and write to a file labelled secret, but only to read classified or unclassified files. As a result, information that passes through the program can flow upwards through the hierarchy of security levels, but not downwards.