Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

dorbdb3 (3p)

Name

dorbdb3 - simultaneously bidiagonalize the blocks of a tall and skinny matrix with orthonomal columns

Synopsis

SUBROUTINE DORBDB3(M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,  TAUP1,
TAUP2, TAUQ1, WORK, LWORK, INFO)


INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21

DOUBLE PRECISION PHI(*), THETA(*)

DOUBLE  PRECISION  TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*), X11(LDX11,*),
X21(LDX21,*)


SUBROUTINE DORBDB3_64(M, P, Q, X11,  LDX11,  X21,  LDX21,  THETA,  PHI,
TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO)


INTEGER*8 INFO, LWORK, M, P, Q, LDX11, LDX21

DOUBLE PRECISION PHI(*), THETA(*)

DOUBLE  PRECISION  TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*), X11(LDX11,*),
X21(LDX21,*)


F95 INTERFACE
SUBROUTINE ORBDB3(M, P, Q, X11, LDX11, X21, LDX21, THETA,  PHI,  TAUP1,
TAUP2, TAUQ1, WORK, LWORK, INFO)


INTEGER :: M, P, Q, LDX11, LDX21, LWORK, INFO

REAL(8), DIMENSION(:,:) :: X11, X21

REAL(8), DIMENSION(:) :: THETA, PHI, TAUP1, TAUP2, TAUQ1, WORK


SUBROUTINE  ORBDB3_64(M,  P,  Q,  X11,  LDX11,  X21, LDX21, THETA, PHI,
TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO)


INTEGER(8) :: M, P, Q, LDX11, LDX21, LWORK, INFO

REAL(8), DIMENSION(:,:) :: X11, X21

REAL(8), DIMENSION(:) :: THETA, PHI, TAUP1, TAUP2, TAUQ1, WORK


C INTERFACE
#include <sunperf.h>

void dorbdb3 (int m, int p, int q, double *x11, int ldx11, double *x21,
int  ldx21, double *theta, double *phi, double *taup1, double
*taup2, double *tauq1, int *info);


void dorbdb3_64 (long m, long p, long q, double *x11, long ldx11,  dou-
ble  *x21,  long  ldx21,  double  *theta, double *phi, double
*taup1, double *taup2, double *tauq1, long *info);

Description

Oracle Solaris Studio Performance Library                          dorbdb3(3P)



NAME
       dorbdb3  - simultaneously bidiagonalize the blocks of a tall and skinny
       matrix with orthonomal columns


SYNOPSIS
       SUBROUTINE DORBDB3(M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,  TAUP1,
                 TAUP2, TAUQ1, WORK, LWORK, INFO)


       INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21

       DOUBLE PRECISION PHI(*), THETA(*)

       DOUBLE  PRECISION  TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*), X11(LDX11,*),
                 X21(LDX21,*)


       SUBROUTINE DORBDB3_64(M, P, Q, X11,  LDX11,  X21,  LDX21,  THETA,  PHI,
                 TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO)


       INTEGER*8 INFO, LWORK, M, P, Q, LDX11, LDX21

       DOUBLE PRECISION PHI(*), THETA(*)

       DOUBLE  PRECISION  TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*), X11(LDX11,*),
                 X21(LDX21,*)


   F95 INTERFACE
       SUBROUTINE ORBDB3(M, P, Q, X11, LDX11, X21, LDX21, THETA,  PHI,  TAUP1,
                 TAUP2, TAUQ1, WORK, LWORK, INFO)


       INTEGER :: M, P, Q, LDX11, LDX21, LWORK, INFO

       REAL(8), DIMENSION(:,:) :: X11, X21

       REAL(8), DIMENSION(:) :: THETA, PHI, TAUP1, TAUP2, TAUQ1, WORK


       SUBROUTINE  ORBDB3_64(M,  P,  Q,  X11,  LDX11,  X21, LDX21, THETA, PHI,
                 TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO)


       INTEGER(8) :: M, P, Q, LDX11, LDX21, LWORK, INFO

       REAL(8), DIMENSION(:,:) :: X11, X21

       REAL(8), DIMENSION(:) :: THETA, PHI, TAUP1, TAUP2, TAUQ1, WORK


   C INTERFACE
       #include <sunperf.h>

       void dorbdb3 (int m, int p, int q, double *x11, int ldx11, double *x21,
                 int  ldx21, double *theta, double *phi, double *taup1, double
                 *taup2, double *tauq1, int *info);


       void dorbdb3_64 (long m, long p, long q, double *x11, long ldx11,  dou-
                 ble  *x21,  long  ldx21,  double  *theta, double *phi, double
                 *taup1, double *taup2, double *tauq1, long *info);


PURPOSE
       dorbdb3 simultaneously bidiagonalizes the blocks of a tall  and  skinny
       matrix X with orthonomal columns:

                             [ B11 ]
       [ X11 ]   [ P1 |    ] [  0  ]
       [-----] = [---------] [-----] Q1**T .
       [ X21 ]   [    | P2 ] [ B21 ]
                             [  0  ]

       X11  is P-by-Q, and X21 is (M-P)-by-Q. M-P must be no larger than P, Q,
       or M-Q. Routines DORBDB1, DORBDB2, and DORBDB4 handle cases in which M-
       P is not the minimum dimension.

       The  orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), and
       (M-Q)-by-(M-Q), respectively. They are represented implicitly by House-
       holder vectors.

       B11  and B12 are (M-P)-by-(M-P) bidiagonal matrices represented implic-
       itly by angles THETA, PHI.



ARGUMENTS
       M (input)
                 M is INTEGER
                 The number of rows X11 plus the number of rows in X21.


       P (input)
                 P is INTEGER
                 The number of rows in X11. 0 <= P <= M. M-P <=  min(P,Q,M-Q).


       Q (input)
                 Q is INTEGER
                 The number of columns in X11 and X21. 0 <= Q <= M.


       X11 (input/output)
                 X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
                 On entry, the top block of the matrix X to be reduced.
                 On  exit,  the columns of tril(X11) specify reflectors for P1
                 and the rows of triu(X11,1) specify reflectors for Q1.


       LDX11 (input)
                 LDX11 is INTEGER
                 The leading dimension of X11. LDX11 >= P.


       X21 (input/output)
                 X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
                 On entry, the bottom block of the matrix X to be reduced.
                 On exit, the columns of tril(X21) specify reflectors for  P2.


       LDX21 (input)
                 LDX21 is INTEGER
                 The leading dimension of X21. LDX21 >= M-P.


       THETA (output)
                 THETA is DOUBLE PRECISION array, dimension (Q)
                 The  entries of the bidiagonal blocks B11, B21 are defined by
                 THETA and PHI. See Further Details.


       PHI (output)
                 PHI is DOUBLE PRECISION array, dimension (Q-1)
                 The entries of the bidiagonal blocks B11, B21 are defined  by
                 THETA and PHI. See Further Details.


       TAUP1 (output)
                 TAUP1 is DOUBLE PRECISION array, dimension (P)
                 The  scalar  factors of the elementary reflectors that define
                 P1.


       TAUP2 (output)
                 TAUP2 is DOUBLE PRECISION array, dimension (M-P)
                 The scalar factors of the elementary reflectors  that  define
                 P2.


       TAUQ1 (output)
                 TAUQ1 is DOUBLE PRECISION array, dimension (Q)
                 The  scalar  factors of the elementary reflectors that define
                 Q1.


       WORK (output)
                 WORK is DOUBLE PRECISION array, dimension (LWORK)


       LWORK (input)
                 LWORK is INTEGER
                 The dimension of the array WORK. LWORK >= M-Q.
                 If LWORK = -1, then a workspace query is assumed; the routine
                 only  calculates  the optimal size of the WORK array, returns
                 this value as the first entry of the WORK array, and no error
                 message related to LWORK is issued by XERBLA.


       INFO (output)
                 INFO is INTEGER
                 = 0:  successful exit;
                 < 0:  if INFO = -i, the i-th argument had an illegal value.


FURTHER DETAILS
       The  upper-bidiagonal  blocks  B11,  B21  are represented implicitly by
       angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1).  Every  entry
       in  each  bidiagonal  band  is a product of a sine or cosine of a THETA
       with a sine or cosine of a PHI. See [1] or SORCSD for details.

       P1, P2, and Q1 are represented as products  of  elementary  reflectors.
       See  SORCSD2BY1  for  details on generating P1, P2, and Q1 using SORGQR
       and SORGLQ.


REFERENCES
       [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
           Algorithms, 50(1):33-65, 2009.



                                  7 Nov 2015                       dorbdb3(3P)