Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

zunmbr (3p)

Name

zunmbr - N matrix C Q*C or Q**H*C or C*Q**H or C*Q or P*C or P**H*C or C*P or C*P**H

Synopsis

SUBROUTINE ZUNMBR(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)

CHARACTER*1 VECT, SIDE, TRANS
DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
INTEGER M, N, K, LDA, LDC, LWORK, INFO

SUBROUTINE ZUNMBR_64(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)

CHARACTER*1 VECT, SIDE, TRANS
DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO




F95 INTERFACE
SUBROUTINE UNMBR(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
LDC, WORK, LWORK, INFO)

CHARACTER(LEN=1) :: VECT, SIDE, TRANS
COMPLEX(8), DIMENSION(:) :: TAU, WORK
COMPLEX(8), DIMENSION(:,:) :: A, C
INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

SUBROUTINE UNMBR_64(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU,
C, LDC, WORK, LWORK, INFO)

CHARACTER(LEN=1) :: VECT, SIDE, TRANS
COMPLEX(8), DIMENSION(:) :: TAU, WORK
COMPLEX(8), DIMENSION(:,:) :: A, C
INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO




C INTERFACE
#include <sunperf.h>

void zunmbr(char vect, char side, char trans, int m, int n, int k, dou-
blecomplex *a, int lda, doublecomplex *tau, doublecomplex *c,
int ldc, int *info);

void zunmbr_64(char vect, char side, char trans, long m, long  n,  long
k, doublecomplex *a, long lda, doublecomplex *tau, doublecom-
plex *c, long ldc, long *info);

Description

Oracle Solaris Studio Performance Library                           zunmbr(3P)



NAME
       zunmbr - overwrite the general complex M-by-N matrix C Q*C or Q**H*C or
       C*Q**H or C*Q or P*C or P**H*C or C*P or C*P**H


SYNOPSIS
       SUBROUTINE ZUNMBR(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
             WORK, LWORK, INFO)

       CHARACTER*1 VECT, SIDE, TRANS
       DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
       INTEGER M, N, K, LDA, LDC, LWORK, INFO

       SUBROUTINE ZUNMBR_64(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
             WORK, LWORK, INFO)

       CHARACTER*1 VECT, SIDE, TRANS
       DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
       INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO




   F95 INTERFACE
       SUBROUTINE UNMBR(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
              LDC, WORK, LWORK, INFO)

       CHARACTER(LEN=1) :: VECT, SIDE, TRANS
       COMPLEX(8), DIMENSION(:) :: TAU, WORK
       COMPLEX(8), DIMENSION(:,:) :: A, C
       INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

       SUBROUTINE UNMBR_64(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU,
              C, LDC, WORK, LWORK, INFO)

       CHARACTER(LEN=1) :: VECT, SIDE, TRANS
       COMPLEX(8), DIMENSION(:) :: TAU, WORK
       COMPLEX(8), DIMENSION(:,:) :: A, C
       INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO




   C INTERFACE
       #include <sunperf.h>

       void zunmbr(char vect, char side, char trans, int m, int n, int k, dou-
                 blecomplex *a, int lda, doublecomplex *tau, doublecomplex *c,
                 int ldc, int *info);

       void zunmbr_64(char vect, char side, char trans, long m, long  n,  long
                 k, doublecomplex *a, long lda, doublecomplex *tau, doublecom-
                 plex *c, long ldc, long *info);



PURPOSE
       If VECT = 'Q', ZUNMBR overwrites the general complex  M-by-N  matrix  C
       with

                       SIDE = 'L'     SIDE = 'R'
       TRANS = 'N':      Q * C          C * Q
       TRANS = 'C':      Q**H * C       C * Q**H

       If  VECT  =  'P', ZUNMBR overwrites the general complex M-by-N matrix C
       with

                       SIDE = 'L'     SIDE = 'R'
       TRANS = 'N':      P * C          C * P
       TRANS = 'C':      P**H * C       C * P**H

       Here Q and P**H are the unitary  matrices  determined  by  ZGEBRD  when
       reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q and
       P**H are defined as products of elementary  reflectors  H(i)  and  G(i)
       respectively.

       Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the order
       of the unitary matrix Q or P**H that is applied.

       If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: if nq >= k,
       Q = H(1) * H(2) . . . H(k);
       if nq < k, Q = H(1) * H(2) . . . H(nq-1).

       If VECT = 'P', A is assumed to have been a K-by-NQ matrix: if k < nq, P
       = G(1) * G(2) . . . G(k);
       if k >= nq, P = G(1) * G(2) . . . G(nq-1).


ARGUMENTS
       VECT (input)
                 = 'Q': apply Q or Q**H;
                 = 'P': apply P or P**H.


       SIDE (input)
                 = 'L': apply Q, Q**H, P or P**H from the Left;
                 = 'R': apply Q, Q**H, P or P**H from the Right.


       TRANS (input)
                 = 'N':  No transpose, apply Q or P;
                 = 'C':  Conjugate transpose, apply Q**H or P**H.


       M (input) The number of rows of the matrix C. M >= 0.


       N (input) The number of columns of the matrix C. N >= 0.


       K (input) If VECT = 'Q', the number of columns in the  original  matrix
                 reduced  by ZGEBRD.  If VECT = 'P', the number of rows in the
                 original matrix reduced by ZGEBRD.  K >= 0.


       A (input) (LDA,min(nq,K)) if VECT = 'Q' (LDA,nq)        if VECT  =  'P'
                 The  vectors  which define the elementary reflectors H(i) and
                 G(i), whose products determine  the  matrices  Q  and  P,  as
                 returned by ZGEBRD.


       LDA (input)
                 The  leading dimension of the array A.  If VECT = 'Q', LDA >=
                 max(1,nq); if VECT = 'P', LDA >= max(1,min(nq,K)).


       TAU (input)
                 TAU(i) must contain  the  scalar  factor  of  the  elementary
                 reflector  H(i)  or G(i) which determines Q or P, as returned
                 by ZGEBRD in the array argument TAUQ or TAUP.


       C (input/output)
                 On entry, the M-by-N matrix C.  On exit, C is overwritten  by
                 Q*C  or  Q**H*C  or  C*Q**H or C*Q or P*C or P**H*C or C*P or
                 C*P**H.


       LDC (input)
                 The leading dimension of the array C. LDC >= max(1,M).


       WORK (workspace)
                 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.


       LWORK (input)
                 The dimension of the array WORK.  If SIDE  =  'L',  LWORK  >=
                 max(1,N); if SIDE = 'R', LWORK >= max(1,M).  For optimum per-
                 formance LWORK >= N*NB if SIDE = 'L', and LWORK  >=  M*NB  if
                 SIDE = 'R', where NB is the optimal blocksize.

                 If LWORK = -1, then a workspace query is assumed; the routine
                 only calculates the optimal size of the WORK  array,  returns
                 this value as the first entry of the WORK array, and no error
                 message related to LWORK is issued by XERBLA.


       INFO (output)
                 = 0:  successful exit;
                 < 0:  if INFO = -i, the i-th argument had an illegal value.




                                  7 Nov 2015                        zunmbr(3P)