Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

sormqr (3p)

Name

sormqr - N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

Synopsis

SUBROUTINE SORMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

CHARACTER*1 SIDE, TRANS
INTEGER M, N, K, LDA, LDC, LWORK, INFO
REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

SUBROUTINE SORMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

CHARACTER*1 SIDE, TRANS
INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)




F95 INTERFACE
SUBROUTINE ORMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)

CHARACTER(LEN=1) :: SIDE, TRANS
INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
REAL, DIMENSION(:) :: TAU, WORK
REAL, DIMENSION(:,:) :: A, C

SUBROUTINE ORMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C,
LDC, WORK, LWORK, INFO)

CHARACTER(LEN=1) :: SIDE, TRANS
INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
REAL, DIMENSION(:) :: TAU, WORK
REAL, DIMENSION(:,:) :: A, C




C INTERFACE
#include <sunperf.h>

void sormqr(char side, char trans, int m, int n, int k, float  *a,  int
lda, float *tau, float *c, int ldc, int *info);

void sormqr_64(char side, char trans, long m, long n, long k, float *a,
long lda, float *tau, float *c, long ldc, long *info);

Description

Oracle Solaris Studio Performance Library                           sormqr(3P)



NAME
       sormqr  -  overwrite the general real M-by-N matrix C with   SIDE = 'L'
       SIDE = 'R' TRANS = 'N'


SYNOPSIS
       SUBROUTINE SORMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
             LWORK, INFO)

       CHARACTER*1 SIDE, TRANS
       INTEGER M, N, K, LDA, LDC, LWORK, INFO
       REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)

       SUBROUTINE SORMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
             LWORK, INFO)

       CHARACTER*1 SIDE, TRANS
       INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
       REAL A(LDA,*), TAU(*), C(LDC,*), WORK(*)




   F95 INTERFACE
       SUBROUTINE ORMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
              WORK, LWORK, INFO)

       CHARACTER(LEN=1) :: SIDE, TRANS
       INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
       REAL, DIMENSION(:) :: TAU, WORK
       REAL, DIMENSION(:,:) :: A, C

       SUBROUTINE ORMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C,
              LDC, WORK, LWORK, INFO)

       CHARACTER(LEN=1) :: SIDE, TRANS
       INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
       REAL, DIMENSION(:) :: TAU, WORK
       REAL, DIMENSION(:,:) :: A, C




   C INTERFACE
       #include <sunperf.h>

       void sormqr(char side, char trans, int m, int n, int k, float  *a,  int
                 lda, float *tau, float *c, int ldc, int *info);

       void sormqr_64(char side, char trans, long m, long n, long k, float *a,
                 long lda, float *tau, float *c, long ldc, long *info);



PURPOSE
       sormqr overwrites the general real M-by-N matrix C with  TRANS  =  'T':
       Q**T * C       C * Q**T

       where Q is a real orthogonal matrix defined as the product of k elemen-
       tary reflectors

             Q = H(1) H(2) . . . H(k)

       as returned by SGEQRF. Q is of order M if SIDE = 'L' and of order N  if
       SIDE = 'R'.


ARGUMENTS
       SIDE (input)
                 = 'L': apply Q or Q**T from the Left;
                 = 'R': apply Q or Q**T from the Right.


       TRANS (input)
                 = 'N':  No transpose, apply Q;
                 = 'T':  Transpose, apply Q**T.


       M (input) The number of rows of the matrix C. M >= 0.


       N (input) The number of columns of the matrix C. N >= 0.


       K (input) The number of elementary reflectors whose product defines the
                 matrix Q.  If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >=  K
                 >= 0.


       A (input) The  i-th  column  must  contain the vector which defines the
                 elementary reflector H(i), for i = 1,2,...,k, as returned  by
                 SGEQRF  in the first k columns of its array argument A.  A is
                 modified by the routine but restored on exit.


       LDA (input)
                 The leading dimension of the array A.  If SIDE = 'L', LDA  >=
                 max(1,M); if SIDE = 'R', LDA >= max(1,N).


       TAU (input)
                 TAU(i)  must  contain  the  scalar  factor  of the elementary
                 reflector H(i), as returned by SGEQRF.


       C (input/output)
                 On entry, the M-by-N matrix C.  On exit, C is overwritten  by
                 Q*C or Q**T*C or C*Q**T or C*Q.


       LDC (input)
                 The leading dimension of the array C. LDC >= max(1,M).


       WORK (workspace)
                 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.


       LWORK (input)
                 The  dimension  of  the  array WORK.  If SIDE = 'L', LWORK >=
                 max(1,N); if SIDE = 'R', LWORK >= max(1,M).  For optimum per-
                 formance  LWORK  >=  N*NB if SIDE = 'L', and LWORK >= M*NB if
                 SIDE = 'R', where NB is the optimal blocksize.

                 If LWORK = -1, then a workspace query is assumed; the routine
                 only  calculates  the optimal size of the WORK array, returns
                 this value as the first entry of the WORK array, and no error
                 message related to LWORK is issued by XERBLA.


       INFO (output)
                 = 0:  successful exit
                 < 0:  if INFO = -i, the i-th argument had an illegal value




                                  7 Nov 2015                        sormqr(3P)