Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

sorbdb4 (3p)

Name

sorbdb4 - simultaneously bidiagonalize the blocks of a tall and skinny matrix with orthonomal columns

Synopsis

SUBROUTINE SORBDB4(M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,  TAUP1,
TAUP2, TAUQ1, PHANTOM, WORK, LWORK, INFO)


INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21

REAL PHI(*), THETA(*)

REAL  PHANTOM(*),  TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*), X11(LDX11,*),
X21(LDX21,*)


SUBROUTINE SORBDB4_64(M, P, Q, X11,  LDX11,  X21,  LDX21,  THETA,  PHI,
TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK, INFO)


INTEGER*8 INFO, LWORK, M, P, Q, LDX11, LDX21

REAL PHI(*), THETA(*)

REAL  PHANTOM(*),  TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*), X11(LDX11,*),
X21(LDX21,*)


F95 INTERFACE
SUBROUTINE ORBDB4(M, P, Q, X11, LDX11, X21, LDX21, THETA,  PHI,  TAUP1,
TAUP2, TAUQ1, PHANTOM, WORK, LWORK, INFO)


REAL, DIMENSION(:,:) :: X11, X21

INTEGER :: M, P, Q, LDX11, LDX21, LWORK, INFO

REAL, DIMENSION(:) :: THETA, PHI, TAUP1, TAUP2, TAUQ1, PHANTOM, WORK


SUBROUTINE  ORBDB4_64(M,  P,  Q,  X11,  LDX11,  X21, LDX21, THETA, PHI,
TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK, INFO)


REAL, DIMENSION(:,:) :: X11, X21

INTEGER(8) :: M, P, Q, LDX11, LDX21, LWORK, INFO

REAL, DIMENSION(:) :: THETA, PHI, TAUP1, TAUP2, TAUQ1, PHANTOM, WORK


C INTERFACE
#include <sunperf.h>

void sorbdb4 (int m, int p, int q, float *x11, int ldx11,  float  *x21,
int  ldx21,  float  *theta,  float  *phi, float *taup1, float
*taup2, float *tauq1, float *phantom, int *info);


void sorbdb4_64 (long m, long p, long q, float *x11, long ldx11,  float
*x21,  long  ldx21,  float  *theta, float *phi, float *taup1,
float *taup2, float *tauq1, float *phantom, long *info);

Description

Oracle Solaris Studio Performance Library                          sorbdb4(3P)



NAME
       sorbdb4  - simultaneously bidiagonalize the blocks of a tall and skinny
       matrix with orthonomal columns


SYNOPSIS
       SUBROUTINE SORBDB4(M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,  TAUP1,
                 TAUP2, TAUQ1, PHANTOM, WORK, LWORK, INFO)


       INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21

       REAL PHI(*), THETA(*)

       REAL  PHANTOM(*),  TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*), X11(LDX11,*),
                 X21(LDX21,*)


       SUBROUTINE SORBDB4_64(M, P, Q, X11,  LDX11,  X21,  LDX21,  THETA,  PHI,
                 TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK, INFO)


       INTEGER*8 INFO, LWORK, M, P, Q, LDX11, LDX21

       REAL PHI(*), THETA(*)

       REAL  PHANTOM(*),  TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*), X11(LDX11,*),
                 X21(LDX21,*)


   F95 INTERFACE
       SUBROUTINE ORBDB4(M, P, Q, X11, LDX11, X21, LDX21, THETA,  PHI,  TAUP1,
                 TAUP2, TAUQ1, PHANTOM, WORK, LWORK, INFO)


       REAL, DIMENSION(:,:) :: X11, X21

       INTEGER :: M, P, Q, LDX11, LDX21, LWORK, INFO

       REAL, DIMENSION(:) :: THETA, PHI, TAUP1, TAUP2, TAUQ1, PHANTOM, WORK


       SUBROUTINE  ORBDB4_64(M,  P,  Q,  X11,  LDX11,  X21, LDX21, THETA, PHI,
                 TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK, INFO)


       REAL, DIMENSION(:,:) :: X11, X21

       INTEGER(8) :: M, P, Q, LDX11, LDX21, LWORK, INFO

       REAL, DIMENSION(:) :: THETA, PHI, TAUP1, TAUP2, TAUQ1, PHANTOM, WORK


   C INTERFACE
       #include <sunperf.h>

       void sorbdb4 (int m, int p, int q, float *x11, int ldx11,  float  *x21,
                 int  ldx21,  float  *theta,  float  *phi, float *taup1, float
                 *taup2, float *tauq1, float *phantom, int *info);


       void sorbdb4_64 (long m, long p, long q, float *x11, long ldx11,  float
                 *x21,  long  ldx21,  float  *theta, float *phi, float *taup1,
                 float *taup2, float *tauq1, float *phantom, long *info);


PURPOSE
       sorbdb4 simultaneously bidiagonalizes the blocks of a tall  and  skinny
       matrix X with orthonomal columns:

                             [ B11 ]
       [ X11 ]   [ P1 |    ] [  0  ]
       [-----] = [---------] [-----] Q1**T .
       [ X21 ]   [    | P2 ] [ B21 ]
                             [  0  ]

       X11  is P-by-Q, and X21 is (M-P)-by-Q. M-Q must be no larger than P, M-
       P, or Q. Routines SORBDB1, SORBDB2, and SORBDB3 handle cases  in  which
       M-Q is not the minimum dimension.

       The  orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), and
       (M-Q)-by-(M-Q), respectively. They are represented implicitly by House-
       holder vectors.

       B11  and B12 are (M-Q)-by-(M-Q) bidiagonal matrices represented implic-
       itly by angles THETA, PHI.



ARGUMENTS
       M (input)
                 M is INTEGER
                 The number of rows X11 plus the number of rows in X21.


       P (input)
                 P is INTEGER
                 The number of rows in X11. 0 <= P <= M.


       Q (input)
                 Q is INTEGER
                 The number of columns in X11 and X21. 0 <= Q <= M and M-Q  <=
                 min(P,M-P,Q).


       X11 (input/output)
                 X11 is REAL array, dimension (LDX11,Q)
                 On entry, the top block of the matrix X to be reduced.
                 On  exit,  the columns of tril(X11) specify reflectors for P1
                 and the rows of triu(X11,1) specify reflectors for Q1.


       LDX11 (input)
                 LDX11 is INTEGER
                 The leading dimension of X11. LDX11 >= P.


       X21 (input/output)
                 X21 is REAL array, dimension (LDX21,Q)
                 On entry, the bottom block of the matrix X to be reduced.
                 On exit, the columns of tril(X21) specify reflectors for  P2.


       LDX21 (input)
                 LDX21 is INTEGER
                 The leading dimension of X21. LDX21 >= M-P.


       THETA (output)
                 THETA is REAL array, dimension (Q)
                 The  entries of the bidiagonal blocks B11, B21 are defined by
                 THETA and PHI. See Further Details.


       PHI (output)
                 PHI is REAL array, dimension (Q-1)
                 The entries of the bidiagonal blocks B11, B21 are defined  by
                 THETA and PHI. See Further Details.


       TAUP1 (output)
                 TAUP1 is REAL array, dimension (P)
                 The  scalar  factors of the elementary reflectors that define
                 P1.


       TAUP2 (output)
                 TAUP2 is REAL array, dimension (M-P)
                 The scalar factors of the elementary reflectors  that  define
                 P2.


       TAUQ1 (output)
                 TAUQ1 is REAL array, dimension (Q)
                 The  scalar  factors of the elementary reflectors that define
                 Q1.


       PHANTOM (output)
                 PHANTOM is REAL array, dimension (M)
                 The routine computes  an  M-by-1  column  vector  Y  that  is
                 orthogonal  to  the columns of [ X11; X21 ]. PHANTOM(1:P) and
                 PHANTOM(P+1:M) contain Householder  vectors  for  Y(1:P)  and
                 Y(P+1:M), respectively.


       WORK (output)
                 WORK is REAL array, dimension (LWORK)


       LWORK (input)
                 LWORK is INTEGER
                 The dimension of the array WORK. LWORK >= M-Q.
                 If LWORK = -1, then a workspace query is assumed; the routine
                 only calculates the optimal size of the WORK  array,  returns
                 this value as the first entry of the WORK array, and no error
                 message related to LWORK is issued by XERBLA.


       INFO (output)
                 INFO is INTEGER
                 = 0:  successful exit;
                 < 0:  if INFO = -i, the i-th argument had an illegal value.


FURTHER DETAILS
       The upper-bidiagonal blocks B11,  B21  are  represented  implicitly  by
       angles  THETA(1),  ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
       in each bidiagonal band is a product of a sine or  cosine  of  a  THETA
       with a sine or cosine of a PHI. See [1] or SORCSD for details.

       P1,  P2,  and  Q1 are represented as products of elementary reflectors.
       See SORCSD2BY1 for details on generating P1, P2, and  Q1  using  SORGQR
       and SORGLQ.


REFERENCES
       [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
           Algorithms, 50(1):33-65, 2009.



                                  7 Nov 2015                       sorbdb4(3P)