Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

zunmql (3p)

Name

zunmql - N matrix C with Q*C, or Q**H*C, or C*Q**H, or C*Q, where Q is a complex unitary matrix defined as the product of K elementary reflectors

Synopsis

SUBROUTINE ZUNMQL(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

CHARACTER*1 SIDE, TRANS
DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
INTEGER M, N, K, LDA, LDC, LWORK, INFO

SUBROUTINE ZUNMQL_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

CHARACTER*1 SIDE, TRANS
DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO




F95 INTERFACE
SUBROUTINE UNMQL(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)

CHARACTER(LEN=1) :: SIDE, TRANS
COMPLEX(8), DIMENSION(:) :: TAU, WORK
COMPLEX(8), DIMENSION(:,:) :: A, C
INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

SUBROUTINE UNMQL_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C,
LDC, WORK, LWORK, INFO)

CHARACTER(LEN=1) :: SIDE, TRANS
COMPLEX(8), DIMENSION(:) :: TAU, WORK
COMPLEX(8), DIMENSION(:,:) :: A, C
INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO




C INTERFACE
#include <sunperf.h>

void  zunmql(char  side, char trans, int m, int n, int k, doublecomplex
*a, int lda, doublecomplex *tau, doublecomplex *c,  int  ldc,
int *info);

void  zunmql_64(char  side, char trans, long m, long n, long k, double-
complex *a, long lda, doublecomplex *tau,  doublecomplex  *c,
long ldc, long *info);

Description

Oracle Solaris Studio Performance Library                           zunmql(3P)



NAME
       zunmql  -  overwrite  the  general complex M-by-N matrix C with Q*C, or
       Q**H*C, or C*Q**H, or C*Q, where Q is a complex unitary matrix  defined
       as the product of K elementary reflectors


SYNOPSIS
       SUBROUTINE ZUNMQL(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
             LWORK, INFO)

       CHARACTER*1 SIDE, TRANS
       DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
       INTEGER M, N, K, LDA, LDC, LWORK, INFO

       SUBROUTINE ZUNMQL_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
             LWORK, INFO)

       CHARACTER*1 SIDE, TRANS
       DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
       INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO




   F95 INTERFACE
       SUBROUTINE UNMQL(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
              WORK, LWORK, INFO)

       CHARACTER(LEN=1) :: SIDE, TRANS
       COMPLEX(8), DIMENSION(:) :: TAU, WORK
       COMPLEX(8), DIMENSION(:,:) :: A, C
       INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

       SUBROUTINE UNMQL_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C,
              LDC, WORK, LWORK, INFO)

       CHARACTER(LEN=1) :: SIDE, TRANS
       COMPLEX(8), DIMENSION(:) :: TAU, WORK
       COMPLEX(8), DIMENSION(:,:) :: A, C
       INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO




   C INTERFACE
       #include <sunperf.h>

       void  zunmql(char  side, char trans, int m, int n, int k, doublecomplex
                 *a, int lda, doublecomplex *tau, doublecomplex *c,  int  ldc,
                 int *info);

       void  zunmql_64(char  side, char trans, long m, long n, long k, double-
                 complex *a, long lda, doublecomplex *tau,  doublecomplex  *c,
                 long ldc, long *info);



PURPOSE
       zunmql overwrites the general complex M-by-N matrix C with

                       SIDE  =  'L'      SIDE  =  'R'  TRANS = 'N':      Q * C
       C * Q TRANS = 'C':      Q**H * C       C * Q**H

       where Q is a complex unitary matrix defined as the product of k elemen-
       tary reflectors

             Q = H(K) . . . H(2) * H(1)

       as  returned by ZGEQLF. Q is of order M if SIDE = 'L' and of order N if
       SIDE = 'R'.


ARGUMENTS
       SIDE (input)
                 = 'L': apply Q or Q**H from the Left;
                 = 'R': apply Q or Q**H from the Right.


       TRANS (input)
                 = 'N':  No transpose, apply Q;
                 = 'C':  Transpose, apply Q**H.


       M (input) The number of rows of the matrix C. M >= 0.


       N (input) The number of columns of the matrix C. N >= 0.


       K (input) The number of elementary reflectors whose product defines the
                 matrix  Q.  If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K
                 >= 0.


       A (input) The i-th column must contain the  vector  which  defines  the
                 elementary  reflector H(i), for i = 1,2,...,k, as returned by
                 ZGEQLF in the last k columns of its array argument A.   A  is
                 modified by the routine but restored on exit.


       LDA (input)
                 The  leading dimension of the array A.  If SIDE = 'L', LDA >=
                 max(1,M); if SIDE = 'R', LDA >= max(1,N).


       TAU (input)
                 TAU(i) must contain  the  scalar  factor  of  the  elementary
                 reflector H(i), as returned by ZGEQLF.


       C (input/output)
                 On  entry, the M-by-N matrix C.  On exit, C is overwritten by
                 Q*C or Q**H*C or C*Q**H or C*Q.


       LDC (input)
                 The leading dimension of the array C. LDC >= max(1,M).


       WORK (workspace)
                 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.


       LWORK (input)
                 The dimension of the array WORK.  If SIDE  =  'L',  LWORK  >=
                 max(1,N); if SIDE = 'R', LWORK >= max(1,M).  For optimum per-
                 formance LWORK >= N*NB if SIDE = 'L', and LWORK  >=  M*NB  if
                 SIDE = 'R', where NB is the optimal blocksize.

                 If LWORK = -1, then a workspace query is assumed; the routine
                 only calculates the optimal size of the WORK  array,  returns
                 this value as the first entry of the WORK array, and no error
                 message related to LWORK is issued by XERBLA.


       INFO (output)
                 = 0:  successful exit;
                 < 0:  if INFO = -i, the i-th argument had an illegal value.




                                  7 Nov 2015                        zunmql(3P)