Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

cbbcsd (3p)

Name

cbbcsd - nal-block form

Synopsis

SUBROUTINE CBBCSD(JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,  THETA,
PHI,  U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D, B11E,
B12D, B12E, B21D, B21E, B22D, B22E, RWORK, LRWORK, INFO)


CHARACTER*1 JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q

REAL B11D(*), B11E(*), B12D(*),  B12E(*),  B21D(*),  B21E(*),  B22D(*),
B22E(*), PHI(*), THETA(*), RWORK(*)

COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), V2T(LDV2T,*)


SUBROUTINE  CBBCSD_64(JOBU1,  JOBU2,  JOBV1T,  JOBV2T,  TRANS, M, P, Q,
THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,
B11E,  B12D,  B12E,  B21D,  B21E,  B22D, B22E, RWORK, LRWORK,
INFO)


CHARACTER*1 JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

INTEGER*8 INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q

REAL B11D(*), B11E(*), B12D(*),  B12E(*),  B21D(*),  B21E(*),  B22D(*),
B22E(*), PHI(*), THETA(*), RWORK(*)

COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), V2T(LDV2T,*)


F95 INTERFACE
SUBROUTINE  BBCSD(JOBU1,  JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,  B11E,
B12D, B12E, B21D, B21E, B22D, B22E, RWORK, LRWORK, INFO)


INTEGER :: M, P, Q, LDU1, LDU2, LDV1T, LDV2T, LRWORK, INFO

CHARACTER(LEN=1) :: JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

REAL,  DIMENSION(:)  :: THETA, PHI, B11D, B11E, B12D, B12E, B21D, B21E,
B22D, B22E, RWORK

COMPLEX, DIMENSION(:,:) :: U1, U2, V1T, V2T


SUBROUTINE BBCSD_64(JOBU1, JOBU2,  JOBV1T,  JOBV2T,  TRANS,  M,  P,  Q,
THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,
B11E, B12D, B12E, B21D,  B21E,  B22D,  B22E,  RWORK,  LRWORK,
INFO)


INTEGER(8) :: M, P, Q, LDU1, LDU2, LDV1T, LDV2T, LRWORK, INFO

CHARACTER(LEN=1) :: JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

REAL,  DIMENSION(:)  :: THETA, PHI, B11D, B11E, B12D, B12E, B21D, B21E,
B22D, B22E, RWORK

COMPLEX, DIMENSION(:,:) :: U1, U2, V1T, V2T


C INTERFACE
#include <sunperf.h>

void cbbcsd (char jobu1, char jobu2, char  jobv1t,  char  jobv2t,  char
trans,  int m, int p, int q, float *theta, float *phi, float-
complex *u1, int ldu1, floatcomplex *u2, int ldu2,  floatcom-
plex  *v1t,  int  ldv1t,  floatcomplex *v2t, int ldv2t, float
*b11d, float *b11e, float *b12d, float  *b12e,  float  *b21d,
float *b21e, float *b22d, float *b22e, int *info);


void  cbbcsd_64 (char jobu1, char jobu2, char jobv1t, char jobv2t, char
trans, long m, long p, long  q,  float  *theta,  float  *phi,
floatcomplex  *u1,  long  ldu1,  floatcomplex *u2, long ldu2,
floatcomplex *v1t, long ldv1t, floatcomplex *v2t, long ldv2t,
float  *b11d,  float  *b11e,  float *b12d, float *b12e, float
*b21d, float *b21e, float *b22d, float *b22e, long *info);

Description

Oracle Solaris Studio Performance Library                           cbbcsd(3P)



NAME
       cbbcsd   - compute the CS decomposition of a unitary matrix in bidiago-
       nal-block form


SYNOPSIS
       SUBROUTINE CBBCSD(JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,  THETA,
                 PHI,  U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D, B11E,
                 B12D, B12E, B21D, B21E, B22D, B22E, RWORK, LRWORK, INFO)


       CHARACTER*1 JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

       INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q

       REAL B11D(*), B11E(*), B12D(*),  B12E(*),  B21D(*),  B21E(*),  B22D(*),
                 B22E(*), PHI(*), THETA(*), RWORK(*)

       COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), V2T(LDV2T,*)


       SUBROUTINE  CBBCSD_64(JOBU1,  JOBU2,  JOBV1T,  JOBV2T,  TRANS, M, P, Q,
                 THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,
                 B11E,  B12D,  B12E,  B21D,  B21E,  B22D, B22E, RWORK, LRWORK,
                 INFO)


       CHARACTER*1 JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

       INTEGER*8 INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q

       REAL B11D(*), B11E(*), B12D(*),  B12E(*),  B21D(*),  B21E(*),  B22D(*),
                 B22E(*), PHI(*), THETA(*), RWORK(*)

       COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), V2T(LDV2T,*)


   F95 INTERFACE
       SUBROUTINE  BBCSD(JOBU1,  JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
                 PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,  B11E,
                 B12D, B12E, B21D, B21E, B22D, B22E, RWORK, LRWORK, INFO)


       INTEGER :: M, P, Q, LDU1, LDU2, LDV1T, LDV2T, LRWORK, INFO

       CHARACTER(LEN=1) :: JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

       REAL,  DIMENSION(:)  :: THETA, PHI, B11D, B11E, B12D, B12E, B21D, B21E,
                 B22D, B22E, RWORK

       COMPLEX, DIMENSION(:,:) :: U1, U2, V1T, V2T


       SUBROUTINE BBCSD_64(JOBU1, JOBU2,  JOBV1T,  JOBV2T,  TRANS,  M,  P,  Q,
                 THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,
                 B11E, B12D, B12E, B21D,  B21E,  B22D,  B22E,  RWORK,  LRWORK,
                 INFO)


       INTEGER(8) :: M, P, Q, LDU1, LDU2, LDV1T, LDV2T, LRWORK, INFO

       CHARACTER(LEN=1) :: JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

       REAL,  DIMENSION(:)  :: THETA, PHI, B11D, B11E, B12D, B12E, B21D, B21E,
                 B22D, B22E, RWORK

       COMPLEX, DIMENSION(:,:) :: U1, U2, V1T, V2T


   C INTERFACE
       #include <sunperf.h>

       void cbbcsd (char jobu1, char jobu2, char  jobv1t,  char  jobv2t,  char
                 trans,  int m, int p, int q, float *theta, float *phi, float-
                 complex *u1, int ldu1, floatcomplex *u2, int ldu2,  floatcom-
                 plex  *v1t,  int  ldv1t,  floatcomplex *v2t, int ldv2t, float
                 *b11d, float *b11e, float *b12d, float  *b12e,  float  *b21d,
                 float *b21e, float *b22d, float *b22e, int *info);


       void  cbbcsd_64 (char jobu1, char jobu2, char jobv1t, char jobv2t, char
                 trans, long m, long p, long  q,  float  *theta,  float  *phi,
                 floatcomplex  *u1,  long  ldu1,  floatcomplex *u2, long ldu2,
                 floatcomplex *v1t, long ldv1t, floatcomplex *v2t, long ldv2t,
                 float  *b11d,  float  *b11e,  float *b12d, float *b12e, float
                 *b21d, float *b21e, float *b22d, float *b22e, long *info);


PURPOSE
       cbbcsd computes the CS decomposition of a unitary matrix in bidiagonal-
       block form,

           [ B11 | B12 0  0 ]
           [  0  |  0 -I  0 ]
       X = [----------------]
           [ B21 | B22 0  0 ]
           [  0  |  0  0  I ]

                                     [  C | -S  0  0 ]
                         [ U1 |    ] [  0 |  0 -I  0 ] [ V1 |    ]**H
                       = [---------] [---------------] [---------]   .
                         [    | U2 ] [  S |  C  0  0 ] [    | V2 ]
                                     [  0 |  0  0  I ]

       X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
       than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
       transposed and/or permuted. This can be done in constant time using
       the TRANS and SIGNS options. See CUNCSD for details.)

       The bidiagonal matrices B11, B12, B21, and B22 are represented
       implicitly by angles THETA(1:Q) and PHI(1:Q-1).

       The unitary matrices U1, U2, V1T, and V2T are input/output.
       The input matrices are pre- or post-multiplied by the appropriate
       singular vector matrices.


ARGUMENTS
       JOBU1 (input)
                 JOBU1 is CHARACTER
                 = 'Y':      U1 is updated;
                 otherwise:  U1 is not updated.


       JOBU2 (input)
                 JOBU2 is CHARACTER
                 = 'Y':      U2 is updated;
                 otherwise:  U2 is not updated.


       JOBV1T (input)
                 JOBV1T is CHARACTER
                 = 'Y':      V1T is updated;
                 otherwise:  V1T is not updated.


       JOBV2T (input)
                 JOBV2T is CHARACTER
                 = 'Y':      V2T is updated;
                 otherwise:  V2T is not updated.


       TRANS (input)
                 TRANS is CHARACTER
                 =  'T':       X, U1, U2, V1T, and V2T are stored in row-major
                 order; in row-major order;
                 otherwise:  X, U1, U2, V1T, and V2T  are  stored  in  column-
                 major order.


       M (input)
                 M is INTEGER
                 The  number  of  rows and columns in X, the unitary matrix in
                 bidiagonal-block form.


       P (input)
                 P is INTEGER
                 The number of rows in the top-left block of X.
                 0 <= P <= M.


       Q (input)
                 Q is INTEGER
                 The number of columns in the top-left block of X.
                 0 <= Q <= MIN(P,M-P,M-Q).


       THETA (input/output)
                 THETA is REAL array, dimension (Q)
                 On entry, the angles THETA(1),...,THETA(Q) that,  along  with
                 PHI(1),  ...,PHI(Q-1),  define the matrix in bidiagonal-block
                 form.  On exit, the angles whose cosines and sines define the
                 diagonal blocks in the CS decomposition.


       PHI (input/output)
                 PHI is REAL array, dimension (Q-1)
                 The    angles    PHI(1),...,PHI(Q-1)    that,    along   with
                 THETA(1),...,THETA(Q), define the matrix in  bidiagonal-block
                 form.


       U1 (input/output)
                 U1 is COMPLEX array, dimension (LDU1,P)
                 On  entry, an LDU1-by-P matrix. On exit, U1 is postmultiplied
                 by the left singular vector matrix common to [ B11 ; 0 ]  and
                 by  the left singular vector matrix common to [ B11 ; 0 ] and
                 [ B12 0 0 ; 0 -I 0 0 ].


       LDU1 (input)
                 LDU1 is INTEGER
                 The leading dimension of the array U1.


       U2 (input/output)
                 U2 is COMPLEX array, dimension (LDU2,M-P)
                 On entry, an LDU2-by-(M-P) matrix. On exit, U2 is  postmulti-
                 plied  by the left singular vector matrix common to [ B21 ; 0
                 ] and [ B22 0 0 ; 0 0 I ].


       LDU2 (input)
                 LDU2 is INTEGER
                 The leading dimension of the array U2.


       V1T (input/output)
                 V1T is COMPLEX array, dimension (LDV1T,Q)
                 On entry, a LDV1T-by-Q matrix. On exit, V1T is  premultiplied
                 by  the  conjugate  transpose  of  the  right singular vector
                 matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].


       LDV1T (input)
                 LDV1T is INTEGER
                 The leading dimension of the array V1T.


       V2T (input/output)
                 V2T is COMPLEX array, dimenison (LDV2T,M-Q)
                 On entry, a LDV2T-by-(M-Q) matrix. On exit, V2T is  premulti-
                 plied by the conjugate transpose of the right singular vector
                 matrix common to [ B12 0 0 ; 0 -I 0 ] and [ B22 0 0 ; 0  0  I
                 ].


       LDV2T (input)
                 LDV2T is INTEGER
                 The leading dimension of the array V2T.


       B11D (output)
                 B11D is REAL array, dimension (Q)
                 When   CBBCSD   converges,   B11D  contains  the  cosines  of
                 THETA(1),..., THETA(Q).  If CBBCSD fails  to  converge,  then
                 B11D  contains the diagonal of the partially reduced top-left
                 block.


       B11E (output)
                 B11E is REAL array, dimension (Q-1)
                 When CBBCSD converges, B11E contains zeros. If  CBBCSD  fails
                 to converge, then B11E contains the superdiagonal of the par-
                 tially reduced top-left block.


       B12D (output)
                 B12D is REAL array, dimension (Q)
                 When CBBCSD converges, B12D contains the  negative  sines  of
                 THETA(1),  ...,  THETA(Q).  If CBBCSD fails to converge, then
                 B12D contains the diagonal of the partially reduced top-right
                 block.


       B12E (output)
                 B12E is REAL array, dimension (Q-1)
                 When  CBBCSD  converges, B12E contains zeros. If CBBCSD fails
                 to converge, then B12E contains the subdiagonal of  the  par-
                 tially reduced top-right block.


       B21D (output)
                 B21D is REAL array, dimension (Q)
                 When  CBBCSD  converges,  B21D contains the negative sines of
                 THETA(1), ..., THETA(Q). If CBBCSD fails  to  converge,  then
                 B21D  contains  the diagonal of the partially reduced bottom-
                 left block.


       B21E (output)
                 B21E is REAL array, dimension (Q-1)
                 When CBBCSD converges, B21E contains zeros. If  CBBCSD  fails
                 to  converge,  then B21E contains the subdiagonal of the par-
                 tially reduced bottom-left block.


       B22D (output)
                 B22D is REAL array, dimension (Q)
                 When CBBCSD converges, B22D contains the  negative  sines  of
                 THETA(1),  ...,  THETA(Q).  If CBBCSD fails to converge, then
                 B22D contains the diagonal of the partially  reduced  bottom-
                 right block.


       B22E (output)
                 B22E is REAL array, dimension (Q-1)
                 When  CBBCSD  converges, B22E contains zeros. If CBBCSD fails
                 to converge, then B22E contains the subdiagonal of  the  par-
                 tially reduced bottom-right block.


       RWORK (output)
                 RWORK is REAL array, dimension (MAX(1,LWORK))
                 On exit, if INFO = 0, RWORK(1) returns the optimal LWORK.


       LRWORK (input)
                 LRWORK is INTEGER
                 The dimension of the array RWORK.
                 LRWORK >= MAX(1,8*Q).
                 If  LRWORK  = -1, then a workspace query is assumed; the rou-
                 tine only calculates the optimal size  of  the  RWORK  array,
                 returns  this value as the first entry of the work array, and
                 no error message related to LRWORK is issued by XERBLA.


       INFO (output)
                 INFO is INTEGER
                 = 0:  successful exit;
                 < 0:  if INFO = -i, the i-th argument had an illegal value;
                 > 0:  if CBBCSD did not converge, INFO specifies  the  number
                 of  nonzero entries in PHI, and B11D, B11E, etc., contain the
                 partially reduced matrix.



                                  7 Nov 2015                        cbbcsd(3P)