dpttrf - compute the L*D*L' factorization of a real symmetric positive definite tridiagonal matrix A
SUBROUTINE DPTTRF(N, D, E, INFO) INTEGER N, INFO DOUBLE PRECISION D(*), E(*) SUBROUTINE DPTTRF_64(N, D, E, INFO) INTEGER*8 N, INFO DOUBLE PRECISION D(*), E(*) F95 INTERFACE SUBROUTINE PTTRF(N, D, E, INFO) INTEGER :: N, INFO REAL(8), DIMENSION(:) :: D, E SUBROUTINE PTTRF_64(N, D, E, INFO) INTEGER(8) :: N, INFO REAL(8), DIMENSION(:) :: D, E C INTERFACE #include <sunperf.h> void dpttrf(int n, double *d, double *e, int *info); void dpttrf_64(long n, double *d, double *e, long *info);
Oracle Solaris Studio Performance Library dpttrf(3P)
NAME
dpttrf - compute the L*D*L' factorization of a real symmetric positive
definite tridiagonal matrix A
SYNOPSIS
SUBROUTINE DPTTRF(N, D, E, INFO)
INTEGER N, INFO
DOUBLE PRECISION D(*), E(*)
SUBROUTINE DPTTRF_64(N, D, E, INFO)
INTEGER*8 N, INFO
DOUBLE PRECISION D(*), E(*)
F95 INTERFACE
SUBROUTINE PTTRF(N, D, E, INFO)
INTEGER :: N, INFO
REAL(8), DIMENSION(:) :: D, E
SUBROUTINE PTTRF_64(N, D, E, INFO)
INTEGER(8) :: N, INFO
REAL(8), DIMENSION(:) :: D, E
C INTERFACE
#include <sunperf.h>
void dpttrf(int n, double *d, double *e, int *info);
void dpttrf_64(long n, double *d, double *e, long *info);
PURPOSE
dpttrf computes the L*D*L' factorization of a real symmetric positive
definite tridiagonal matrix A. The factorization may also be regarded
as having the form A = U'*D*U.
ARGUMENTS
N (input) The order of the matrix A. N >= 0.
D (input/output)
On entry, the n diagonal elements of the tridiagonal matrix
A. On exit, the n diagonal elements of the diagonal matrix D
from the L*D*L' factorization of A.
E (input/output)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A. On exit, the (n-1) subdiagonal elements of the
unit bidiagonal factor L from the L*D*L' factorization of A.
E can also be regarded as the superdiagonal of the unit bidi-
agonal factor U from the U'*D*U factorization of A.
INFO (output)
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not posi-
tive definite; if k < N, the factorization could not be com-
pleted, while if k = N, the factorization was completed, but
D(N) = 0.
7 Nov 2015 dpttrf(3P)