Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

cunmlq (3p)

Name

cunmlq - N matrix C with Q*C, or Q**H*C, or C*Q**H, or C*Q, where Q is a complex unitary matrix defined as the product of K elementary reflectors

Synopsis

SUBROUTINE CUNMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

CHARACTER*1 SIDE, TRANS
COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
INTEGER M, N, K, LDA, LDC, LWORK, INFO

SUBROUTINE CUNMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

CHARACTER*1 SIDE, TRANS
COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO




F95 INTERFACE
SUBROUTINE UNMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)

CHARACTER(LEN=1) :: SIDE, TRANS
COMPLEX, DIMENSION(:) :: TAU, WORK
COMPLEX, DIMENSION(:,:) :: A, C
INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

SUBROUTINE UNMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C,
LDC, WORK, LWORK, INFO)

CHARACTER(LEN=1) :: SIDE, TRANS
COMPLEX, DIMENSION(:) :: TAU, WORK
COMPLEX, DIMENSION(:,:) :: A, C
INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO




C INTERFACE
#include <sunperf.h>

void cunmlq(char side, char trans, int m, int n, int k, complex *a, int
lda, complex *tau, complex *c, int ldc, int *info);

void cunmlq_64(char side, char trans, long m, long n, long  k,  complex
*a,  long  lda,  complex  *tau,  complex  *c,  long ldc, long
*info);

Description

Oracle Solaris Studio Performance Library                           cunmlq(3P)



NAME
       cunmlq  -  overwrite  the  general complex M-by-N matrix C with Q*C, or
       Q**H*C, or C*Q**H, or C*Q, where Q is a complex unitary matrix  defined
       as the product of K elementary reflectors


SYNOPSIS
       SUBROUTINE CUNMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
             LWORK, INFO)

       CHARACTER*1 SIDE, TRANS
       COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
       INTEGER M, N, K, LDA, LDC, LWORK, INFO

       SUBROUTINE CUNMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
             LWORK, INFO)

       CHARACTER*1 SIDE, TRANS
       COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
       INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO




   F95 INTERFACE
       SUBROUTINE UNMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
              WORK, LWORK, INFO)

       CHARACTER(LEN=1) :: SIDE, TRANS
       COMPLEX, DIMENSION(:) :: TAU, WORK
       COMPLEX, DIMENSION(:,:) :: A, C
       INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

       SUBROUTINE UNMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C,
              LDC, WORK, LWORK, INFO)

       CHARACTER(LEN=1) :: SIDE, TRANS
       COMPLEX, DIMENSION(:) :: TAU, WORK
       COMPLEX, DIMENSION(:,:) :: A, C
       INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO




   C INTERFACE
       #include <sunperf.h>

       void cunmlq(char side, char trans, int m, int n, int k, complex *a, int
                 lda, complex *tau, complex *c, int ldc, int *info);

       void cunmlq_64(char side, char trans, long m, long n, long  k,  complex
                 *a,  long  lda,  complex  *tau,  complex  *c,  long ldc, long
                 *info);



PURPOSE
       cunmlq overwrites the general complex M-by-N matrix C with

                       SIDE = 'L'     SIDE = 'R'
       TRANS = 'N':      Q * C          C * Q
       TRANS = 'C':      Q**H * C       C * Q**H

       where Q is a complex unitary matrix defined as the product of k elemen-
       tary reflectors

             Q = H(K)**H . . . H(2)**H * H(1)**H

       as  returned by CGELQF. Q is of order M if SIDE = 'L' and of order N if
       SIDE = 'R'.


ARGUMENTS
       SIDE (input)
                 = 'L': apply Q or Q**H from the Left;
                 = 'R': apply Q or Q**H from the Right.


       TRANS (input)
                 = 'N':  No transpose, apply Q;
                 = 'C':  Conjugate transpose, apply Q**H.


       M (input) The number of rows of the matrix C. M >= 0.


       N (input) The number of columns of the matrix C. N >= 0.


       K (input) The number of elementary reflectors whose product defines the
                 matrix  Q.  If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K
                 >= 0.


       A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE =  'R'  The  i-th  row
                 must  contain the vector which defines the elementary reflec-
                 tor H(i), for i = 1,2,...,k, as returned  by  CGELQF  in  the
                 first  k  rows of its array argument A.  A is modified by the
                 routine but restored on exit.


       LDA (input)
                 The leading dimension of the array A. LDA >= max(1,K).


       TAU (input)
                 TAU(i) must contain  the  scalar  factor  of  the  elementary
                 reflector H(i), as returned by CGELQF.


       C (input/output)
                 On  entry, the M-by-N matrix C.  On exit, C is overwritten by
                 Q*C or Q**H*C or C*Q**H or C*Q.


       LDC (input)
                 The leading dimension of the array C. LDC >= max(1,M).


       WORK (workspace)
                 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.


       LWORK (input)
                 The dimension of the array WORK.  If SIDE  =  'L',  LWORK  >=
                 max(1,N); if SIDE = 'R', LWORK >= max(1,M).  For optimum per-
                 formance LWORK >= N*NB if SIDE 'L', and LWORK >= M*NB if SIDE
                 = 'R', where NB is the optimal blocksize.

                 If LWORK = -1, then a workspace query is assumed; the routine
                 only calculates the optimal size of the WORK  array,  returns
                 this value as the first entry of the WORK array, and no error
                 message related to LWORK is issued by XERBLA.


       INFO (output)
                 = 0:  successful exit
                 < 0:  if INFO = -i, the i-th argument had an illegal value




                                  7 Nov 2015                        cunmlq(3P)