ztbtrs - solve a triangular system of the form A*X = B, A**T*X = B, or A**H*X = B, where A is a triangular band matrix of order N, and B is an N-by-NRHS matrix
SUBROUTINE ZTBTRS(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B, LDB, INFO) CHARACTER*1 UPLO, TRANSA, DIAG DOUBLE COMPLEX A(LDA,*), B(LDB,*) INTEGER N, KD, NRHS, LDA, LDB, INFO SUBROUTINE ZTBTRS_64(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B, LDB, INFO) CHARACTER*1 UPLO, TRANSA, DIAG DOUBLE COMPLEX A(LDA,*), B(LDB,*) INTEGER*8 N, KD, NRHS, LDA, LDB, INFO F95 INTERFACE SUBROUTINE TBTRS(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B, LDB, INFO) CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG COMPLEX(8), DIMENSION(:,:) :: A, B INTEGER :: N, KD, NRHS, LDA, LDB, INFO SUBROUTINE TBTRS_64(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B, LDB, INFO) CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG COMPLEX(8), DIMENSION(:,:) :: A, B INTEGER(8) :: N, KD, NRHS, LDA, LDB, INFO C INTERFACE #include <sunperf.h> void ztbtrs(char uplo, char transa, char diag, int n, int kd, int nrhs, doublecomplex *a, int lda, doublecomplex *b, int ldb, int *info); void ztbtrs_64(char uplo, char transa, char diag, long n, long kd, long nrhs, doublecomplex *a, long lda, doublecomplex *b, long ldb, long *info);
Oracle Solaris Studio Performance Library                           ztbtrs(3P)
NAME
       ztbtrs  - solve a triangular system of the form A*X = B, A**T*X = B, or
       A**H*X = B, where A is a triangular band matrix of order N, and B is an
       N-by-NRHS matrix
SYNOPSIS
       SUBROUTINE ZTBTRS(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B, LDB,
             INFO)
       CHARACTER*1 UPLO, TRANSA, DIAG
       DOUBLE COMPLEX A(LDA,*), B(LDB,*)
       INTEGER N, KD, NRHS, LDA, LDB, INFO
       SUBROUTINE ZTBTRS_64(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B,
             LDB, INFO)
       CHARACTER*1 UPLO, TRANSA, DIAG
       DOUBLE COMPLEX A(LDA,*), B(LDB,*)
       INTEGER*8 N, KD, NRHS, LDA, LDB, INFO
   F95 INTERFACE
       SUBROUTINE TBTRS(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B,
              LDB, INFO)
       CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
       COMPLEX(8), DIMENSION(:,:) :: A, B
       INTEGER :: N, KD, NRHS, LDA, LDB, INFO
       SUBROUTINE TBTRS_64(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B,
              LDB, INFO)
       CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
       COMPLEX(8), DIMENSION(:,:) :: A, B
       INTEGER(8) :: N, KD, NRHS, LDA, LDB, INFO
   C INTERFACE
       #include <sunperf.h>
       void ztbtrs(char uplo, char transa, char diag, int n, int kd, int nrhs,
                 doublecomplex *a, int lda, doublecomplex  *b,  int  ldb,  int
                 *info);
       void ztbtrs_64(char uplo, char transa, char diag, long n, long kd, long
                 nrhs, doublecomplex *a, long lda, doublecomplex *b, long ldb,
                 long *info);
PURPOSE
       ztbtrs solves a triangular system of the form
       A * X = B, A**T * X = B, or A**H * X = B
       where  A  is a triangular band matrix of order N, and B is an N-by-NRHS
       matrix.  A check is made to verify that A is nonsingular.
ARGUMENTS
       UPLO (input)
                 = 'U':  A is upper triangular;
                 = 'L':  A is lower triangular.
       TRANSA (input)
                 Specifies the form of the system of equations:
                 = 'N':  A * X = B     (No transpose)
                 = 'T':  A**T * X = B  (Transpose)
                 = 'C':  A**H * X = B  (Conjugate transpose)
       DIAG (input)
                 = 'N':  A is non-unit triangular;
                 = 'U':  A is unit triangular.
       N (input) The order of the matrix A.  N >= 0.
       KD (input)
                 The number of superdiagonals or subdiagonals of the  triangu-
                 lar band matrix A.  KD >= 0.
       NRHS (input)
                 The  number  of right hand sides, i.e., the number of columns
                 of the matrix B.  NRHS >= 0.
       A (input) The upper or lower triangular band matrix A,  stored  in  the
                 first  kd+1 rows of A.  The j-th column of A is stored in the
                 j-th column of the  array  A  as  follows:  if  UPLO  =  'U',
                 A(kd+1+i-j,j)  = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L',
                 A(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).  If DIAG = 'U',
                 the diagonal elements of A are not referenced and are assumed
                 to be 1.
       LDA (input)
                 The leading dimension of the array A.  LDA >= KD+1.
       B (input/output)
                 On entry, the right hand side matrix B.  On exit, if  INFO  =
                 0, the solution matrix X.
       LDB (input)
                 The leading dimension of the array B.  LDB >= max(1,N).
       INFO (output)
                 = 0:  successful exit
                 < 0:  if INFO = -i, the i-th argument had an illegal value
                 >  0:   if  INFO = i, the i-th diagonal element of A is zero,
                 indicating that the matrix is singular and  the  solutions  X
                 have not been computed.
                                  7 Nov 2015                        ztbtrs(3P)