csytrs - metric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSYTRF
SUBROUTINE CSYTRS(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO) CHARACTER*1 UPLO COMPLEX A(LDA,*), B(LDB,*) INTEGER N, NRHS, LDA, LDB, INFO INTEGER IPIVOT(*) SUBROUTINE CSYTRS_64(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO) CHARACTER*1 UPLO COMPLEX A(LDA,*), B(LDB,*) INTEGER*8 N, NRHS, LDA, LDB, INFO INTEGER*8 IPIVOT(*) F95 INTERFACE SUBROUTINE SYTRS(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO) CHARACTER(LEN=1) :: UPLO COMPLEX, DIMENSION(:,:) :: A, B INTEGER :: N, NRHS, LDA, LDB, INFO INTEGER, DIMENSION(:) :: IPIVOT SUBROUTINE SYTRS_64(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO) CHARACTER(LEN=1) :: UPLO COMPLEX, DIMENSION(:,:) :: A, B INTEGER(8) :: N, NRHS, LDA, LDB, INFO INTEGER(8), DIMENSION(:) :: IPIVOT C INTERFACE #include <sunperf.h> void csytrs(char uplo, int n, int nrhs, complex *a, int lda, int *ipivot, complex *b, int ldb, int *info); void csytrs_64(char uplo, long n, long nrhs, complex *a, long lda, long *ipivot, complex *b, long ldb, long *info);
Oracle Solaris Studio Performance Library csytrs(3P)
NAME
csytrs - solve a system of linear equations A*X = B with a complex sym-
metric matrix A using the factorization A = U*D*U**T or A = L*D*L**T
computed by CSYTRF
SYNOPSIS
SUBROUTINE CSYTRS(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)
CHARACTER*1 UPLO
COMPLEX A(LDA,*), B(LDB,*)
INTEGER N, NRHS, LDA, LDB, INFO
INTEGER IPIVOT(*)
SUBROUTINE CSYTRS_64(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)
CHARACTER*1 UPLO
COMPLEX A(LDA,*), B(LDB,*)
INTEGER*8 N, NRHS, LDA, LDB, INFO
INTEGER*8 IPIVOT(*)
F95 INTERFACE
SUBROUTINE SYTRS(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB, INFO)
CHARACTER(LEN=1) :: UPLO
COMPLEX, DIMENSION(:,:) :: A, B
INTEGER :: N, NRHS, LDA, LDB, INFO
INTEGER, DIMENSION(:) :: IPIVOT
SUBROUTINE SYTRS_64(UPLO, N, NRHS, A, LDA, IPIVOT, B, LDB,
INFO)
CHARACTER(LEN=1) :: UPLO
COMPLEX, DIMENSION(:,:) :: A, B
INTEGER(8) :: N, NRHS, LDA, LDB, INFO
INTEGER(8), DIMENSION(:) :: IPIVOT
C INTERFACE
#include <sunperf.h>
void csytrs(char uplo, int n, int nrhs, complex *a, int lda, int
*ipivot, complex *b, int ldb, int *info);
void csytrs_64(char uplo, long n, long nrhs, complex *a, long lda, long
*ipivot, complex *b, long ldb, long *info);
PURPOSE
csytrs solves a system of linear equations A*X = B with a complex sym-
metric matrix A using the factorization A = U*D*U**T or A = L*D*L**T
computed by CSYTRF.
ARGUMENTS
UPLO (input)
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix. = 'U': Upper trian-
gular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N (input) The order of the matrix A. N >= 0.
NRHS (input)
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by CSYTRF.
LDA (input)
The leading dimension of the array A. LDA >= max(1,N).
IPIVOT (input)
Details of the interchanges and the block structure of D as
determined by CSYTRF.
B (input/output)
On entry, the right hand side matrix B. On exit, the solu-
tion matrix X.
LDB (input)
The leading dimension of the array B. LDB >= max(1,N).
INFO (output)
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
7 Nov 2015 csytrs(3P)