zgeql2 - compute the QL factorization of a general rectangular matrix using an unblocked algorithm
SUBROUTINE ZGEQL2(M, N, A, LDA, TAU, WORK, INFO) INTEGER INFO, LDA, M, N DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*) SUBROUTINE ZGEQL2_64(M, N, A, LDA, TAU, WORK, INFO) INTEGER*8 INFO, LDA, M, N DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*) F95 INTERFACE SUBROUTINE GEQL2(M, N, A, LDA, TAU, WORK, INFO) INTEGER :: M, N, LDA, INFO COMPLEX(8), DIMENSION(:) :: TAU, WORK COMPLEX(8), DIMENSION(:,:) :: A SUBROUTINE GEQL2_64(M, N, A, LDA, TAU, WORK, INFO) INTEGER(8) :: M, N, LDA, INFO COMPLEX(8), DIMENSION(:) :: TAU, WORK COMPLEX(8), DIMENSION(:,:) :: A C INTERFACE #include <sunperf.h> void zgeql2 (int m, int n, doublecomplex *a, int lda, doublecomplex *tau, int *info); void zgeql2_64 (long m, long n, doublecomplex *a, long lda, doublecom- plex *tau, long *info);
Oracle Solaris Studio Performance Library zgeql2(3P)
NAME
zgeql2 - compute the QL factorization of a general rectangular matrix
using an unblocked algorithm
SYNOPSIS
SUBROUTINE ZGEQL2(M, N, A, LDA, TAU, WORK, INFO)
INTEGER INFO, LDA, M, N
DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
SUBROUTINE ZGEQL2_64(M, N, A, LDA, TAU, WORK, INFO)
INTEGER*8 INFO, LDA, M, N
DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
F95 INTERFACE
SUBROUTINE GEQL2(M, N, A, LDA, TAU, WORK, INFO)
INTEGER :: M, N, LDA, INFO
COMPLEX(8), DIMENSION(:) :: TAU, WORK
COMPLEX(8), DIMENSION(:,:) :: A
SUBROUTINE GEQL2_64(M, N, A, LDA, TAU, WORK, INFO)
INTEGER(8) :: M, N, LDA, INFO
COMPLEX(8), DIMENSION(:) :: TAU, WORK
COMPLEX(8), DIMENSION(:,:) :: A
C INTERFACE
#include <sunperf.h>
void zgeql2 (int m, int n, doublecomplex *a, int lda, doublecomplex
*tau, int *info);
void zgeql2_64 (long m, long n, doublecomplex *a, long lda, doublecom-
plex *tau, long *info);
PURPOSE
zgeql2 computes a QL factorization of a complex m by n matrix A: A = Q
* L.
ARGUMENTS
M (input)
M is INTEGER
The number of rows of the matrix A. M >= 0.
N (input)
N is INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output)
A is COMPLEX*16 array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m >= n, the lower triangle of the subarray A(m-
n+1:m,1:n) contains the n by n lower triangular matrix L; if
m <= n, the elements on and below the (n-m)-th superdiagonal
contain the m by n lower trapezoidal matrix L; the remaining
elements, with the array TAU, represent the unitary matrix Q
as a product of elementary reflectors (see Further Details).
LDA (input)
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output)
TAU is COMPLEX*16 array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (output)
WORK is COMPLEX*16 array, dimension (N)
INFO (output)
INFO is INTEGER
= 0: successful exit,
< 0: if INFO = -i, the i-th argument had an illegal value.
FURTHER DETAILS
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(1:m-k+i-1,n-k+i), and tau in TAU(i).
7 Nov 2015 zgeql2(3P)