Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

sgges (3p)

Name

sgges - N real nonsymmetric matrices (A,B),

Synopsis

SUBROUTINE SGGES(JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK,
BWORK, INFO)

CHARACTER*1 JOBVSL, JOBVSR, SORT
INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
LOGICAL SELCTG
LOGICAL BWORK(*)
REAL  A(LDA,*),  B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*), VSL(LDVSL,*),
VSR(LDVSR,*), WORK(*)

SUBROUTINE SGGES_64(JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK,
BWORK, INFO)

CHARACTER*1 JOBVSL, JOBVSR, SORT
INTEGER*8 N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
LOGICAL*8 SELCTG
LOGICAL*8 BWORK(*)
REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),  BETA(*),  VSL(LDVSL,*),
VSR(LDVSR,*), WORK(*)




F95 INTERFACE
SUBROUTINE GGES(JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
LWORK, BWORK, INFO)

CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT
INTEGER :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
LOGICAL :: SELCTG
LOGICAL, DIMENSION(:) :: BWORK
REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
REAL, DIMENSION(:,:) :: A, B, VSL, VSR

SUBROUTINE GGES_64(JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
WORK, LWORK, BWORK, INFO)

CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT
INTEGER(8) :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
LOGICAL(8) :: SELCTG
LOGICAL(8), DIMENSION(:) :: BWORK
REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
REAL, DIMENSION(:,:) :: A, B, VSL, VSR




C INTERFACE
#include <sunperf.h>

void     sgges(char     jobvsl,     char     jobvsr,     char     sort,
int(*selctg)(float,float,float), int n, float  *a,  int  lda,
float  *b,  int ldb, int *sdim, float *alphar, float *alphai,
float *beta, float *vsl, int ldvsl, float  *vsr,  int  ldvsr,
int *info);

void     sgges_64(char     jobvsl,     char    jobvsr,    char    sort,
long(*selctg)(float,float,float), long n, float *a, long lda,
float *b, long ldb, long *sdim, float *alphar, float *alphai,
float *beta, float *vsl, long ldvsl, float *vsr, long  ldvsr,
long *info);

Description

Oracle Solaris Studio Performance Library                            sgges(3P)



NAME
       sgges - compute for a pair of N-by-N real nonsymmetric matrices (A,B),


SYNOPSIS
       SUBROUTINE SGGES(JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
             SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK,
             BWORK, INFO)

       CHARACTER*1 JOBVSL, JOBVSR, SORT
       INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
       LOGICAL SELCTG
       LOGICAL BWORK(*)
       REAL  A(LDA,*),  B(LDB,*), ALPHAR(*), ALPHAI(*), BETA(*), VSL(LDVSL,*),
       VSR(LDVSR,*), WORK(*)

       SUBROUTINE SGGES_64(JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
             SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK,
             BWORK, INFO)

       CHARACTER*1 JOBVSL, JOBVSR, SORT
       INTEGER*8 N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
       LOGICAL*8 SELCTG
       LOGICAL*8 BWORK(*)
       REAL A(LDA,*), B(LDB,*), ALPHAR(*), ALPHAI(*),  BETA(*),  VSL(LDVSL,*),
       VSR(LDVSR,*), WORK(*)




   F95 INTERFACE
       SUBROUTINE GGES(JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
              SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
              LWORK, BWORK, INFO)

       CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT
       INTEGER :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
       LOGICAL :: SELCTG
       LOGICAL, DIMENSION(:) :: BWORK
       REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
       REAL, DIMENSION(:,:) :: A, B, VSL, VSR

       SUBROUTINE GGES_64(JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
              LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
              WORK, LWORK, BWORK, INFO)

       CHARACTER(LEN=1) :: JOBVSL, JOBVSR, SORT
       INTEGER(8) :: N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
       LOGICAL(8) :: SELCTG
       LOGICAL(8), DIMENSION(:) :: BWORK
       REAL, DIMENSION(:) :: ALPHAR, ALPHAI, BETA, WORK
       REAL, DIMENSION(:,:) :: A, B, VSL, VSR




   C INTERFACE
       #include <sunperf.h>

       void     sgges(char     jobvsl,     char     jobvsr,     char     sort,
                 int(*selctg)(float,float,float), int n, float  *a,  int  lda,
                 float  *b,  int ldb, int *sdim, float *alphar, float *alphai,
                 float *beta, float *vsl, int ldvsl, float  *vsr,  int  ldvsr,
                 int *info);

       void     sgges_64(char     jobvsl,     char    jobvsr,    char    sort,
                 long(*selctg)(float,float,float), long n, float *a, long lda,
                 float *b, long ldb, long *sdim, float *alphar, float *alphai,
                 float *beta, float *vsl, long ldvsl, float *vsr, long  ldvsr,
                 long *info);



PURPOSE
       sgges  computes  for a pair of N-by-N real nonsymmetric matrices (A,B),
       the generalized eigenvalues, the generalized  real  Schur  form  (S,T),
       optionally,  the  left  and/or right matrices of Schur vectors (VSL and
       VSR). This gives the generalized Schur factorization

                (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )

       Optionally, it also orders the eigenvalues so that a  selected  cluster
       of  eigenvalues  appears  in  the  leading diagonal blocks of the upper
       quasi-triangular matrix S and the upper triangular matrix T.The leading
       columns  of  VSL  and VSR then form an orthonormal basis for the corre-
       sponding left and right eigenspaces (deflating subspaces).

       (If only the generalized eigenvalues are needed, use the  driver  SGGEV
       instead, which is faster.)

       A  generalized eigenvalue for a pair of matrices (A,B) is a scalar w or
       a ratio alpha/beta = w, such that  A - w*B is singular.  It is  usually
       represented  as  the pair (alpha,beta), as there is a reasonable inter-
       pretation for beta=0 or both being zero.

       A pair of matrices (S,T) is in generalized real  Schur  form  if  T  is
       upper triangular with non-negative diagonal and S is block upper trian-
       gular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond to  real
       generalized  eigenvalues,  while  2-by-2 blocks of S will be "standard-
       ized" by making the corresponding elements of T have the form:
               [  a  0  ]
               [  0  b  ]

       and the pair of corresponding 2-by-2 blocks in S and T will have a com-
       plex conjugate pair of generalized eigenvalues.


ARGUMENTS
       JOBVSL (input)
                 = 'N':  do not compute the left Schur vectors;
                 = 'V':  compute the left Schur vectors.


       JOBVSR (input)
                 = 'N':  do not compute the right Schur vectors;
                 = 'V':  compute the right Schur vectors.


       SORT (input)
                 Specifies  whether  or  not  to  order the eigenvalues on the
                 diagonal of the generalized Schur form.  = 'N':   Eigenvalues
                 are not ordered;
                 = 'S':  Eigenvalues are ordered (see SELCTG);


       SELCTG (input)
                 LOGICAL  FUNCTION  of  three  REAL  arguments  SELCTG must be
                 declared EXTERNAL in the calling subroutine.  If SORT =  'N',
                 SELCTG  is  not referenced.  If SORT = 'S', SELCTG is used to
                 select eigenvalues to sort to the top left of the Schur form.
                 An  eigenvalue  (ALPHAR(j)+ALPHAI(j))/BETA(j)  is selected if
                 SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e.  if  either
                 one  of  a complex conjugate pair of eigenvalues is selected,
                 then both complex eigenvalues are selected.

                 Note that in the ill-conditioned case, a selected complex ei-
                 genvalue  may  no  longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
                 BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2 in
                 this case.


       N (input) The order of the matrices A, B, VSL, and VSR.  N >= 0.


       A (input/output)
                 On  entry, the first of the pair of matrices.  On exit, A has
                 been overwritten by its generalized Schur form S.


       LDA (input)
                 The leading dimension of A.  LDA >= max(1,N).


       B (input/output)
                 On entry, the second of the pair of matrices.  On exit, B has
                 been overwritten by its generalized Schur form T.


       LDB (input)
                 The leading dimension of B.  LDB >= max(1,N).


       SDIM (output)
                 If SORT = 'N', SDIM = 0.  If SORT = 'S', SDIM = number of ei-
                 genvalues (after sorting) for which SELCTG is true.  (Complex
                 conjugate pairs for which SELCTG is true for either eigenval-
                 ue count as 2.)


       ALPHAR (output)
                 On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j),  j=1,...,N,  will
                 be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i, and
                 BETA(j),j=1,...,N are the diagonals of the complex Schur form
                 (S,T)  that would result if the 2-by-2 diagonal blocks of the
                 real Schur form of (A,B) were further reduced  to  triangular
                 form   using  2-by-2  complex  unitary  transformations.   If
                 ALPHAI(j) is zero, then the j-th eigenvalue is real; if posi-
                 tive,  then  the  j-th and (j+1)-st eigenvalues are a complex
                 conjugate pair, with ALPHAI(j+1) negative.

                 Note: the quotients ALPHAR(j)/BETA(j)  and  ALPHAI(j)/BETA(j)
                 may  easily over- or underflow, and BETA(j) may even be zero.
                 Thus, the user should  avoid  naively  computing  the  ratio.
                 However,  ALPHAR and ALPHAI will be always less than and usu-
                 ally comparable with norm(A) in magnitude,  and  BETA  always
                 less than and usually comparable with norm(B).


       ALPHAI (output)
                 See the description for ALPHAR.


       BETA (output)
                 See the description for ALPHAR.


       VSL (output)
                 If  JOBVSL  =  'V',  VSL will contain the left Schur vectors.
                 Not referenced if JOBVSL = 'N'.


       LDVSL (input)
                 The leading dimension of the matrix VSL. LDVSL  >=1,  and  if
                 JOBVSL = 'V', LDVSL >= N.


       VSR (output)
                 If  JOBVSR  =  'V', VSR will contain the right Schur vectors.
                 Not referenced if JOBVSR = 'N'.


       LDVSR (input)
                 The leading dimension of the matrix VSR. LDVSR >= 1,  and  if
                 JOBVSR = 'V', LDVSR >= N.


       WORK (workspace)
                 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.


       LWORK (input)
                 The dimension of the array WORK.  LWORK >= max(8*N,6*N+16).

                 If LWORK = -1, then a workspace query is assumed; the routine
                 only calculates the optimal size of the WORK  array,  returns
                 this value as the first entry of the WORK array, and no error
                 message related to LWORK is issued by XERBLA.


       BWORK (workspace)
                 dimension(N) Not referenced if SORT = 'N'.


       INFO (output)
                 = 0:  successful exit
                 < 0:  if INFO = -i, the i-th argument had an illegal value.
                 = 1,...,N: The QZ iteration failed.  (A,B) are not  in  Schur
                 form, but ALPHAR(j), ALPHAI(j), and BETA(j) should be correct
                 for j=INFO+1,...,N.  > N:   =N+1:  other  than  QZ  iteration
                 failed in SHGEQZ.
                 =N+2:  after reordering, roundoff changed values of some com-
                 plex eigenvalues so that leading eigenvalues in the  General-
                 ized  Schur  form no longer satisfy SELCTG=.TRUE.  This could
                 also be caused due to scaling.  =N+3:  reordering  failed  in
                 STGSEN.




                                  7 Nov 2015                         sgges(3P)