dtptri - compute the inverse of a real upper or lower triangular matrix A stored in packed format
SUBROUTINE DTPTRI(UPLO, DIAG, N, A, INFO) CHARACTER*1 UPLO, DIAG INTEGER N, INFO DOUBLE PRECISION A(*) SUBROUTINE DTPTRI_64(UPLO, DIAG, N, A, INFO) CHARACTER*1 UPLO, DIAG INTEGER*8 N, INFO DOUBLE PRECISION A(*) F95 INTERFACE SUBROUTINE TPTRI(UPLO, DIAG, N, A, INFO) CHARACTER(LEN=1) :: UPLO, DIAG INTEGER :: N, INFO REAL(8), DIMENSION(:) :: A SUBROUTINE TPTRI_64(UPLO, DIAG, N, A, INFO) CHARACTER(LEN=1) :: UPLO, DIAG INTEGER(8) :: N, INFO REAL(8), DIMENSION(:) :: A C INTERFACE #include <sunperf.h> void dtptri(char uplo, char diag, int n, double *a, int *info); void dtptri_64(char uplo, char diag, long n, double *a, long *info);
Oracle Solaris Studio Performance Library dtptri(3P)
NAME
dtptri - compute the inverse of a real upper or lower triangular matrix
A stored in packed format
SYNOPSIS
SUBROUTINE DTPTRI(UPLO, DIAG, N, A, INFO)
CHARACTER*1 UPLO, DIAG
INTEGER N, INFO
DOUBLE PRECISION A(*)
SUBROUTINE DTPTRI_64(UPLO, DIAG, N, A, INFO)
CHARACTER*1 UPLO, DIAG
INTEGER*8 N, INFO
DOUBLE PRECISION A(*)
F95 INTERFACE
SUBROUTINE TPTRI(UPLO, DIAG, N, A, INFO)
CHARACTER(LEN=1) :: UPLO, DIAG
INTEGER :: N, INFO
REAL(8), DIMENSION(:) :: A
SUBROUTINE TPTRI_64(UPLO, DIAG, N, A, INFO)
CHARACTER(LEN=1) :: UPLO, DIAG
INTEGER(8) :: N, INFO
REAL(8), DIMENSION(:) :: A
C INTERFACE
#include <sunperf.h>
void dtptri(char uplo, char diag, int n, double *a, int *info);
void dtptri_64(char uplo, char diag, long n, double *a, long *info);
PURPOSE
dtptri computes the inverse of a real upper or lower triangular matrix
A stored in packed format.
ARGUMENTS
UPLO (input)
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input)
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangular matrix A, stored
columnwise in a linear array. The j-th column of A is stored
in the array A as follows: if UPLO = 'U', A(i + (j-1)*j/2) =
A(i,j) for 1<=i<=j; if UPLO = 'L', A(i + (j-1)*((2*n-j)/2) =
A(i,j) for j<=i<=n. See below for further details. On exit,
the (triangular) inverse of the original matrix, in the same
packed storage format.
INFO (output)
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.
FURTHER DETAILS
A triangular matrix A can be transferred to packed storage using one of
the following program segments:
UPLO = 'U': UPLO = 'L':
JC = 1 JC = 1
DO 2 J = 1, N DO 2 J = 1, N
DO 1 I = 1, J DO 1 I = J, N
A(JC+I-1) = A(I,J) A(JC+I-J) = A(I,J)
1 CONTINUE 1 CONTINUE
JC = JC + J JC = JC + N - J + 1
2 CONTINUE 2 CONTINUE
7 Nov 2015 dtptri(3P)