cungr2 - torization determined by cgerqf (unblocked algorithm)
SUBROUTINE CUNGR2(M, N, K, A, LDA, TAU, WORK, INFO) COMPLEX A(LDA,*), TAU(*), WORK(*) INTEGER M, N, K, LDA, INFO SUBROUTINE CUNGR2_64(M, N, K, A, LDA, TAU, WORK, INFO) COMPLEX A(LDA,*), TAU(*), WORK(*) INTEGER*8 M, N, K, LDA, INFO F95 INTERFACE SUBROUTINE UNGR2(M, N, K, A, LDA, TAU, WORK, INFO) COMPLEX, DIMENSION(:) :: TAU, WORK COMPLEX, DIMENSION(:,:) :: A INTEGER :: M, N, K, LDA, INFO SUBROUTINE UNGR2_64(M, N, K, A, LDA, TAU, WORK, INFO) COMPLEX, DIMENSION(:) :: TAU, WORK COMPLEX, DIMENSION(:,:) :: A INTEGER(8) :: M, N, K, LDA, INFO C INTERFACE #include <sunperf.h> void cungr2(int m, int n, int k, complex *a, int lda, complex *tau, int *info); void cungr2_64(long m, long n, long k, complex *a, long lda, complex *tau, long *info);
Oracle Solaris Studio Performance Library cungr2(3P)
NAME
cungr2 - generate all or part of the unitary matrix Q from an RQ fac-
torization determined by cgerqf (unblocked algorithm)
SYNOPSIS
SUBROUTINE CUNGR2(M, N, K, A, LDA, TAU, WORK, INFO)
COMPLEX A(LDA,*), TAU(*), WORK(*)
INTEGER M, N, K, LDA, INFO
SUBROUTINE CUNGR2_64(M, N, K, A, LDA, TAU, WORK, INFO)
COMPLEX A(LDA,*), TAU(*), WORK(*)
INTEGER*8 M, N, K, LDA, INFO
F95 INTERFACE
SUBROUTINE UNGR2(M, N, K, A, LDA, TAU, WORK, INFO)
COMPLEX, DIMENSION(:) :: TAU, WORK
COMPLEX, DIMENSION(:,:) :: A
INTEGER :: M, N, K, LDA, INFO
SUBROUTINE UNGR2_64(M, N, K, A, LDA, TAU, WORK, INFO)
COMPLEX, DIMENSION(:) :: TAU, WORK
COMPLEX, DIMENSION(:,:) :: A
INTEGER(8) :: M, N, K, LDA, INFO
C INTERFACE
#include <sunperf.h>
void cungr2(int m, int n, int k, complex *a, int lda, complex *tau, int
*info);
void cungr2_64(long m, long n, long k, complex *a, long lda, complex
*tau, long *info);
PURPOSE
cungr2 generates an M-by-N complex matrix Q with orthonormal rows,
which is defined as the last M rows of a product of K elementary
reflectors of order N
Q = H(1)**H * H(2)**H . . . H(K)**H
as returned by CGERQF.
ARGUMENTS
M (input) The number of rows of the matrix Q. M >= 0.
N (input) The number of columns of the matrix Q. N >= M.
K (input) The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output)
On entry, the (m-k+i)-th row must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by CGERQF in the last k rows of its array argument
A. On exit, the m-by-n matrix Q.
LDA (input)
The first dimension of the array A. LDA >= max(1,M).
TAU (input)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by CGERQF.
WORK (workspace)
dimension(M)
INFO (output)
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
7 Nov 2015 cungr2(3P)