sla_gercond - estimate the Skeel condition number for a general matrix
REAL FUNCTION SLA_GERCOND (TRANS, N, A, LDA, AF, LDAF, IPIV, CMODE, C, INFO, WORK, IWORK) CHARACTER*1 TRANS INTEGER N, LDA, LDAF, INFO, CMODE INTEGER IPIV(*), IWORK(*) REAL A(LDA,*), AF(LDAF,*), WORK(*), C(*) REAL FUNCTION SLA_GERCOND_64 (TRANS, N, A, LDA, AF, LDAF, IPIV, CMODE, C, INFO, WORK, IWORK) CHARACTER*1 TRANS INTEGER*8 N, LDA, LDAF, INFO, CMODE INTEGER*8 IPIV(*), IWORK(*) REAL A(LDA,*), AF(LDAF,*), WORK(*), C(*) F95 INTERFACE REAL FUNCTION LA_GERCOND (TRANS, N, A, LDA, AF, LDAF, IPIV, CMODE, C, INFO, WORK, IWORK) REAL, DIMENSION(:,:) :: A, AF INTEGER :: N, LDA, LDAF, CMODE, INFO CHARACTER(LEN=1) :: TRANS INTEGER, DIMENSION(:) :: IPIV, IWORK REAL, DIMENSION(:) :: C, WORK REAL FUNCTION LA_GERCOND_64 (TRANS, N, A, LDA, AF, LDAF, IPIV, CMODE, C, INFO, WORK, IWORK) REAL, DIMENSION(:,:) :: A, AF INTEGER(8) :: N, LDA, LDAF, CMODE, INFO CHARACTER(LEN=1) :: TRANS INTEGER(8), DIMENSION(:) :: IPIV, IWORK REAL, DIMENSION(:) :: C, WORK C INTERFACE #include <sunperf.h> float sla_gercond (char trans, int n, float *a, int lda, float *af, int ldaf, int *ipiv, int cmode, float *c, int *info); float sla_gercond_64 (char trans, long n, float *a, long lda, float *af, long ldaf, long *ipiv, long cmode, float *c, long *info);
Oracle Solaris Studio Performance Library sla_gercond(3P)
NAME
sla_gercond - estimate the Skeel condition number for a general matrix
SYNOPSIS
REAL FUNCTION SLA_GERCOND (TRANS, N, A, LDA, AF, LDAF, IPIV, CMODE, C,
INFO, WORK, IWORK)
CHARACTER*1 TRANS
INTEGER N, LDA, LDAF, INFO, CMODE
INTEGER IPIV(*), IWORK(*)
REAL A(LDA,*), AF(LDAF,*), WORK(*), C(*)
REAL FUNCTION SLA_GERCOND_64 (TRANS, N, A, LDA, AF, LDAF, IPIV, CMODE,
C, INFO, WORK, IWORK)
CHARACTER*1 TRANS
INTEGER*8 N, LDA, LDAF, INFO, CMODE
INTEGER*8 IPIV(*), IWORK(*)
REAL A(LDA,*), AF(LDAF,*), WORK(*), C(*)
F95 INTERFACE
REAL FUNCTION LA_GERCOND (TRANS, N, A, LDA, AF, LDAF, IPIV, CMODE, C,
INFO, WORK, IWORK)
REAL, DIMENSION(:,:) :: A, AF
INTEGER :: N, LDA, LDAF, CMODE, INFO
CHARACTER(LEN=1) :: TRANS
INTEGER, DIMENSION(:) :: IPIV, IWORK
REAL, DIMENSION(:) :: C, WORK
REAL FUNCTION LA_GERCOND_64 (TRANS, N, A, LDA, AF, LDAF, IPIV, CMODE,
C, INFO, WORK, IWORK)
REAL, DIMENSION(:,:) :: A, AF
INTEGER(8) :: N, LDA, LDAF, CMODE, INFO
CHARACTER(LEN=1) :: TRANS
INTEGER(8), DIMENSION(:) :: IPIV, IWORK
REAL, DIMENSION(:) :: C, WORK
C INTERFACE
#include <sunperf.h>
float sla_gercond (char trans, int n, float *a, int lda, float *af, int
ldaf, int *ipiv, int cmode, float *c, int *info);
float sla_gercond_64 (char trans, long n, float *a, long lda, float
*af, long ldaf, long *ipiv, long cmode, float *c, long
*info);
PURPOSE
sla_gercond estimates the Skeel condition number of op(A)*op2(C) where
op2 is determined by CMODE as follows
CMODE = 1 op2(C) = C
CMODE = 0 op2(C) = I
CMODE = -1 op2(C) = inv(C)
The Skeel condition number cond(A)=norminf(|inv(A)||A|) is computed by
computing scaling factors R such that diag(R)*A*op2(C) is row equili-
brated and computing the standard infinity-norm condition number.
ARGUMENTS
TRANS (input)
TRANS is CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate Transpose = Transpose)
N (input)
N is INTEGER
The number of linear equations, i.e., the order of the matrix
A. N >= 0.
A (input)
A is REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A.
LDA (input)
LDA is INTEGER
The leading dimension of the array A.
LDA >= max(1,N).
AF (input)
AF is REAL array, dimension (LDAF,N)
The factors L and U from the factorization
A = P*L*U as computed by SGETRF.
LDAF (input)
LDAF is INTEGER
The leading dimension of the array AF.
LDAF >= max(1,N).
IPIV (input)
IPIV is INTEGER array, dimension (N)
The pivot indices from the factorization A=P*L*U as computed
by SGETRF; row i of the matrix was interchanged with row
IPIV(i).
CMODE (input)
CMODE is INTEGER
Determines op2(C) in the formula op(A) * op2(C) as follows:
CMODE = 1 op2(C) = C
CMODE = 0 op2(C) = I
CMODE = -1 op2(C) = inv(C)
C (input)
C is REAL array, dimension (N)
The vector C in the formula op(A) * op2(C).
INFO (output)
INFO is INTEGER
= 0: Successful exit.
i > 0: The ith argument is invalid.
WORK (input)
WORK is REAL array, dimension (3*N).
Workspace.
IWORK (input)
IWORK is INTEGER array, dimension (N).
Workspace.2
7 Nov 2015 sla_gercond(3P)