Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

zbbcsd (3p)

Name

zbbcsd - nal-block form

Synopsis

SUBROUTINE ZBBCSD(JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,  THETA,
PHI,  U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D, B11E,
B12D, B12E, B21D, B21E, B22D, B22E, RWORK, LRWORK, INFO)


CHARACTER*1 JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q

DOUBLE PRECISION B11D(*), B11E(*), B12D(*), B12E(*), B21D(*),  B21E(*),
B22D(*), B22E(*), PHI(*), THETA(*), RWORK(*)

DOUBLE COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), V2T(LDV2T,*)


SUBROUTINE  ZBBCSD_64(JOBU1,  JOBU2,  JOBV1T,  JOBV2T,  TRANS, M, P, Q,
THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,
B11E,  B12D,  B12E,  B21D,  B21E,  B22D, B22E, RWORK, LRWORK,
INFO)


CHARACTER*1 JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

INTEGER*8 INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q

DOUBLE PRECISION B11D(*), B11E(*), B12D(*), B12E(*), B21D(*),  B21E(*),
B22D(*), B22E(*), PHI(*), THETA(*), RWORK(*)

DOUBLE COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), V2T(LDV2T,*)


F95 INTERFACE
SUBROUTINE  BBCSD(JOBU1,  JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,  B11E,
B12D, B12E, B21D, B21E, B22D, B22E, RWORK, LRWORK, INFO)


INTEGER :: M, P, Q, LDU1, LDU2, LDV1T, LDV2T, LRWORK, INFO

CHARACTER(LEN=1) :: JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

COMPLEX(8), DIMENSION(:,:) :: U1, U2, V1T, V2T

REAL(8),  DIMENSION(:)  ::  THETA,  PHI,  B11D, B11E, B12D, B12E, B21D,
B21E, B22D, B22E, RWORK


SUBROUTINE BBCSD_64(JOBU1, JOBU2,  JOBV1T,  JOBV2T,  TRANS,  M,  P,  Q,
THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,
B11E, B12D, B12E, B21D,  B21E,  B22D,  B22E,  RWORK,  LRWORK,
INFO)


INTEGER(8) :: M, P, Q, LDU1, LDU2, LDV1T, LDV2T, LRWORK, INFO

CHARACTER(LEN=1) :: JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

COMPLEX(8), DIMENSION(:,:) :: U1, U2, V1T, V2T

REAL(8),  DIMENSION(:)  ::  THETA,  PHI,  B11D, B11E, B12D, B12E, B21D,
B21E, B22D, B22E, RWORK


C INTERFACE
#include <sunperf.h>

void zbbcsd (char jobu1, char jobu2, char  jobv1t,  char  jobv2t,  char
trans,  int m, int p, int q, double *theta, double *phi, dou-
blecomplex *u1, int ldu1, doublecomplex *u2, int  ldu2,  dou-
blecomplex  *v1t,  int  ldv1t, doublecomplex *v2t, int ldv2t,
double *b11d, double *b11e, double *b12d, double *b12e,  dou-
ble  *b21d,  double  *b21e,  double  *b22d, double *b22e, int
*info);


void zbbcsd_64 (char jobu1, char jobu2, char jobv1t, char jobv2t,  char
trans,  long  m,  long p, long q, double *theta, double *phi,
doublecomplex *u1, long ldu1, doublecomplex *u2,  long  ldu2,
doublecomplex  *v1t,  long  ldv1t,  doublecomplex  *v2t, long
ldv2t, double  *b11d,  double  *b11e,  double  *b12d,  double
*b12e,  double  *b21d,  double  *b21e,  double  *b22d, double
*b22e, long *info);

Description

Oracle Solaris Studio Performance Library                           zbbcsd(3P)



NAME
       zbbcsd  -  compute the CS decomposition of a unitary matrix in bidiago-
       nal-block form


SYNOPSIS
       SUBROUTINE ZBBCSD(JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,  THETA,
                 PHI,  U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D, B11E,
                 B12D, B12E, B21D, B21E, B22D, B22E, RWORK, LRWORK, INFO)


       CHARACTER*1 JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

       INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q

       DOUBLE PRECISION B11D(*), B11E(*), B12D(*), B12E(*), B21D(*),  B21E(*),
                 B22D(*), B22E(*), PHI(*), THETA(*), RWORK(*)

       DOUBLE COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), V2T(LDV2T,*)


       SUBROUTINE  ZBBCSD_64(JOBU1,  JOBU2,  JOBV1T,  JOBV2T,  TRANS, M, P, Q,
                 THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,
                 B11E,  B12D,  B12E,  B21D,  B21E,  B22D, B22E, RWORK, LRWORK,
                 INFO)


       CHARACTER*1 JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

       INTEGER*8 INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q

       DOUBLE PRECISION B11D(*), B11E(*), B12D(*), B12E(*), B21D(*),  B21E(*),
                 B22D(*), B22E(*), PHI(*), THETA(*), RWORK(*)

       DOUBLE COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), V2T(LDV2T,*)


   F95 INTERFACE
       SUBROUTINE  BBCSD(JOBU1,  JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
                 PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,  B11E,
                 B12D, B12E, B21D, B21E, B22D, B22E, RWORK, LRWORK, INFO)


       INTEGER :: M, P, Q, LDU1, LDU2, LDV1T, LDV2T, LRWORK, INFO

       CHARACTER(LEN=1) :: JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

       COMPLEX(8), DIMENSION(:,:) :: U1, U2, V1T, V2T

       REAL(8),  DIMENSION(:)  ::  THETA,  PHI,  B11D, B11E, B12D, B12E, B21D,
                 B21E, B22D, B22E, RWORK


       SUBROUTINE BBCSD_64(JOBU1, JOBU2,  JOBV1T,  JOBV2T,  TRANS,  M,  P,  Q,
                 THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,
                 B11E, B12D, B12E, B21D,  B21E,  B22D,  B22E,  RWORK,  LRWORK,
                 INFO)


       INTEGER(8) :: M, P, Q, LDU1, LDU2, LDV1T, LDV2T, LRWORK, INFO

       CHARACTER(LEN=1) :: JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

       COMPLEX(8), DIMENSION(:,:) :: U1, U2, V1T, V2T

       REAL(8),  DIMENSION(:)  ::  THETA,  PHI,  B11D, B11E, B12D, B12E, B21D,
                 B21E, B22D, B22E, RWORK


   C INTERFACE
       #include <sunperf.h>

       void zbbcsd (char jobu1, char jobu2, char  jobv1t,  char  jobv2t,  char
                 trans,  int m, int p, int q, double *theta, double *phi, dou-
                 blecomplex *u1, int ldu1, doublecomplex *u2, int  ldu2,  dou-
                 blecomplex  *v1t,  int  ldv1t, doublecomplex *v2t, int ldv2t,
                 double *b11d, double *b11e, double *b12d, double *b12e,  dou-
                 ble  *b21d,  double  *b21e,  double  *b22d, double *b22e, int
                 *info);


       void zbbcsd_64 (char jobu1, char jobu2, char jobv1t, char jobv2t,  char
                 trans,  long  m,  long p, long q, double *theta, double *phi,
                 doublecomplex *u1, long ldu1, doublecomplex *u2,  long  ldu2,
                 doublecomplex  *v1t,  long  ldv1t,  doublecomplex  *v2t, long
                 ldv2t, double  *b11d,  double  *b11e,  double  *b12d,  double
                 *b12e,  double  *b21d,  double  *b21e,  double  *b22d, double
                 *b22e, long *info);


PURPOSE
       zbbcsd computes the CS decomposition of a unitary matrix in bidiagonal-
       block form,


           [ B11 | B12 0  0 ]
           [  0  |  0 -I  0 ]
       X = [----------------]
           [ B21 | B22 0  0 ]
           [  0  |  0  0  I ]

                                     [  C | -S  0  0 ]
                         [ U1 |    ] [  0 |  0 -I  0 ] [ V1 |    ]**H
                       = [---------] [---------------] [---------]   .
                         [    | U2 ] [  S |  C  0  0 ] [    | V2 ]
                                     [  0 |  0  0  I ]

       X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
       than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
       transposed and/or permuted. This can be done in constant time using
       the TRANS and SIGNS options. See ZUNCSD for details.)

       The bidiagonal matrices B11, B12, B21, and B22 are represented
       implicitly by angles THETA(1:Q) and PHI(1:Q-1).

       The unitary matrices U1, U2, V1T, and V2T are input/output.
       The input matrices are pre- or post-multiplied by the appropriate
       singular vector matrices.


ARGUMENTS
       JOBU1 (input)
                 JOBU1 is CHARACTER
                 = 'Y':      U1 is updated;
                 otherwise:  U1 is not updated.


       JOBU2 (input)
                 JOBU2 is CHARACTER
                 = 'Y':      U2 is updated;
                 otherwise:  U2 is not updated.


       JOBV1T (input)
                 JOBV1T is CHARACTER
                 = 'Y':      V1T is updated;
                 otherwise:  V1T is not updated.


       JOBV2T (input)
                 JOBV2T is CHARACTER
                 = 'Y':      V2T is updated;
                 otherwise:  V2T is not updated.


       TRANS (input)
                 TRANS is CHARACTER
                 =  'T':       X, U1, U2, V1T, and V2T are stored in row-major
                 order;
                 otherwise:  X, U1, U2, V1T, and V2T  are  stored  in  column-
                 major order.


       M (input)
                 M is INTEGER
                 The  number  of  rows and columns in X, the unitary matrix in
                 bidiagonal-block form.


       P (input)
                 P is INTEGER
                 The number of rows in the top-left block of X.
                 0 <= P <= M.


       Q (input)
                 Q is INTEGER
                 The number of columns in the top-left block of X.
                 0 <= Q <= MIN(P,M-P,M-Q).


       THETA (input/output)
                 THETA is DOUBLE PRECISION array, dimension (Q)
                 On entry, the angles THETA(1),...,THETA(Q) that,  along  with
                 PHI(1), ...,PHI(Q-1), define the matrix matrix in bidiagonal-
                 block form. On exit,  the  angles  whose  cosines  and  sines
                 define the diagonal blocks in the CS decomposition.


       PHI (input/output)
                 PHI is DOUBLE PRECISION array, dimension (Q-1)
                 The    angles    PHI(1),...,PHI(Q-1)    that,    along   with
                 THETA(1),...,THETA(Q), define the matrix in  bidiagonal-block
                 form.


       U1 (input/output)
                 U1 is COMPLEX*16 array, dimension (LDU1,P)
                 On  entry, an LDU1-by-P matrix. On exit, U1 is postmultiplied
                 by the left singular vector matrix common to [ B11 ; 0 ]  and
                 [ B12 0 0 ; 0 -I 0 0 ].


       LDU1 (input)
                 LDU1 is INTEGER
                 The leading dimension of the array U1.


       U2 (input/output)
                 U2 is COMPLEX*16 array, dimension (LDU2,M-P)
                 On  entry, an LDU2-by-(M-P) matrix. On exit, U2 is postmulti-
                 plied by the left singular vector matrix common to [ B21 ;  0
                 ] and [ B22 0 0 ; 0 0 I ].


       LDU2 (input)
                 LDU2 is INTEGER
                 The leading dimension of the array U2.


       V1T (input/output)
                 V1T is COMPLEX*16 array, dimension (LDV1T,Q)
                 On  entry, a LDV1T-by-Q matrix. On exit, V1T is premultiplied
                 by the conjugate  transpose  of  the  right  singular  vector
                 matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].


       LDV1T (input)
                 LDV1T is INTEGER
                 The leading dimension of the array V1T.


       V2T (input/output)
                 V2T is COMPLEX*16 array, dimenison (LDV2T,M-Q)
                 On  entry, a LDV2T-by-(M-Q) matrix. On exit, V2T is premulti-
                 plied by the conjugate transpose of the right singular vector
                 matrix  common  to [ B12 0 0 ; 0 -I 0 ] and [ B22 0 0 ; 0 0 I
                 ].


       LDV2T (input)
                 LDV2T is INTEGER
                 The leading dimension of the array V2T.


       B11D (output)
                 B11D is DOUBLE PRECISION array, dimension (Q)
                 When  ZBBCSD  converges,  B11D  contains   the   cosines   of
                 THETA(1),...,  THETA(Q).   If  ZBBCSD fails to converge, then
                 B11D contains the diagonal of the partially reduced  top-left
                 block.


       B11E (output)
                 B11E is DOUBLE PRECISION array, dimension (Q-1)
                 When  ZBBCSD  converges, B11E contains zeros. If ZBBCSD fails
                 to converge, then B11E contains the superdiagonal of the par-
                 tially reduced top-left block.


       B12D (output)
                 B12D is DOUBLE PRECISION array, dimension (Q)
                 When  ZBBCSD  converges,  B12D contains the negative sines of
                 THETA(1), ..., THETA(Q).  If ZBBCSD fails to  converge,  then
                 B12D contains the diagonal of the partially reduced top-right
                 block.


       B12E (output)
                 B12E is DOUBLE PRECISION array, dimension (Q-1)
                 When ZBBCSD converges, B12E contains zeros. If  ZBBCSD  fails
                 to  converge,  then B12E contains the subdiagonal of the par-
                 tially reduced top-right block.


       B21D (output)
                 B21D is DOUBLE PRECISION array, dimension (Q)
                 When ZBBCSD converges, B21D contains the  negative  sines  of
                 THETA(1),  ...,  THETA(Q).  If ZBBCSD fails to converge, then
                 B21D contains the diagonal of the partially  reduced  bottom-
                 left block.


       B21E (output)
                 B21E is DOUBLE PRECISION array, dimension (Q-1)
                 When  ZBBCSD  converges, B21E contains zeros. If ZBBCSD fails
                 to converge, then B21E contains the subdiagonal of  the  par-
                 tially reduced bottom-left block.


       B22D (output)
                 B22D is DOUBLE PRECISION array, dimension (Q)
                 When  ZBBCSD  converges,  B22D contains the negative sines of
                 THETA(1), ..., THETA(Q).  If ZBBCSD fails to  converge,  then
                 B22D  contains  the diagonal of the partially reduced bottom-
                 right block.


       B22E (output)
                 B22E is DOUBLE PRECISION array, dimension (Q-1)
                 When ZBBCSD converges, B22E contains zeros. If  ZBBCSD  fails
                 to  converge,  then B22E contains the subdiagonal of the par-
                 tially reduced bottom-right block.


       RWORK (output)
                 RWORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                 On exit, if INFO = 0, RWORK(1) returns the optimal LWORK.


       LRWORK (input)
                 LRWORK is INTEGER
                 The dimension of the array RWORK.
                 LRWORK >= MAX(1,8*Q).
                 If LRWORK = -1, then a workspace query is assumed;  the  rou-
                 tine  only  calculates  the  optimal size of the RWORK array,
                 returns this value as the first entry of the work array,  and
                 no error message related to LRWORK is issued by XERBLA.


       INFO (output)
                 INFO is INTEGER
                 = 0:  successful exit;
                 < 0:  if INFO = -i, the i-th argument had an illegal value;
                 >  0:   if ZBBCSD did not converge, INFO specifies the number
                 of nonzero entries in PHI, and B11D, B11E, etc., contain  the
                 partially reduced matrix.



                                  7 Nov 2015                        zbbcsd(3P)