ctbtrs - solve a triangular system of the form A*X = B, A**T*X = B, or A**H*X = B, where A is a triangular band matrix of order N, and B is an N-by-NRHS matrix
SUBROUTINE CTBTRS(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B, LDB, INFO) CHARACTER*1 UPLO, TRANSA, DIAG COMPLEX A(LDA,*), B(LDB,*) INTEGER N, KD, NRHS, LDA, LDB, INFO SUBROUTINE CTBTRS_64(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B, LDB, INFO) CHARACTER*1 UPLO, TRANSA, DIAG COMPLEX A(LDA,*), B(LDB,*) INTEGER*8 N, KD, NRHS, LDA, LDB, INFO F95 INTERFACE SUBROUTINE TBTRS(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B, LDB, INFO) CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG COMPLEX, DIMENSION(:,:) :: A, B INTEGER :: N, KD, NRHS, LDA, LDB, INFO SUBROUTINE TBTRS_64(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B, LDB, INFO) CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG COMPLEX, DIMENSION(:,:) :: A, B INTEGER(8) :: N, KD, NRHS, LDA, LDB, INFO C INTERFACE #include <sunperf.h> void ctbtrs(char uplo, char transa, char diag, int n, int kd, int nrhs, complex *a, int lda, complex *b, int ldb, int *info); void ctbtrs_64(char uplo, char transa, char diag, long n, long kd, long nrhs, complex *a, long lda, complex *b, long ldb, long *info);
Oracle Solaris Studio Performance Library ctbtrs(3P)
NAME
ctbtrs - solve a triangular system of the form A*X = B, A**T*X = B, or
A**H*X = B, where A is a triangular band matrix of order N, and B is an
N-by-NRHS matrix
SYNOPSIS
SUBROUTINE CTBTRS(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B, LDB,
INFO)
CHARACTER*1 UPLO, TRANSA, DIAG
COMPLEX A(LDA,*), B(LDB,*)
INTEGER N, KD, NRHS, LDA, LDB, INFO
SUBROUTINE CTBTRS_64(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B,
LDB, INFO)
CHARACTER*1 UPLO, TRANSA, DIAG
COMPLEX A(LDA,*), B(LDB,*)
INTEGER*8 N, KD, NRHS, LDA, LDB, INFO
F95 INTERFACE
SUBROUTINE TBTRS(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA, B,
LDB, INFO)
CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
COMPLEX, DIMENSION(:,:) :: A, B
INTEGER :: N, KD, NRHS, LDA, LDB, INFO
SUBROUTINE TBTRS_64(UPLO, TRANSA, DIAG, N, KD, NRHS, A, LDA,
B, LDB, INFO)
CHARACTER(LEN=1) :: UPLO, TRANSA, DIAG
COMPLEX, DIMENSION(:,:) :: A, B
INTEGER(8) :: N, KD, NRHS, LDA, LDB, INFO
C INTERFACE
#include <sunperf.h>
void ctbtrs(char uplo, char transa, char diag, int n, int kd, int nrhs,
complex *a, int lda, complex *b, int ldb, int *info);
void ctbtrs_64(char uplo, char transa, char diag, long n, long kd, long
nrhs, complex *a, long lda, complex *b, long ldb, long
*info);
PURPOSE
ctbtrs solves a triangular system of the form
A * X = B, A**T * X = B, or A**H * X = B
where A is a triangular band matrix of order N, and B is an N-by-NRHS
matrix. A check is made to verify that A is nonsingular.
ARGUMENTS
UPLO (input)
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANSA (input)
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose)
DIAG (input)
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) The order of the matrix A. N >= 0.
KD (input)
The number of superdiagonals or subdiagonals of the triangu-
lar band matrix A. KD >= 0.
NRHS (input)
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) The upper or lower triangular band matrix A, stored in the
first kd+1 rows of A. The j-th column of A is stored in the
j-th column of the array A as follows: if UPLO = 'U',
A(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L',
A(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). If DIAG = 'U',
the diagonal elements of A are not referenced and are assumed
to be 1.
LDA (input)
The leading dimension of the array A. LDA >= KD+1.
B (input/output)
On entry, the right hand side matrix B. On exit, if INFO =
0, the solution matrix X.
LDB (input)
The leading dimension of the array B. LDB >= max(1,N).
INFO (output)
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the solutions X
have not been computed.
7 Nov 2015 ctbtrs(3P)