Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

zpftrs (3p)

Name

zpftrs - solve a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization computed by ZPFTRF

Synopsis

SUBROUTINE ZPFTRS(TRANSR, UPLO, N, NRHS, A, B, LDB, INFO)


CHARACTER*1 TRANSR, UPLO

INTEGER INFO, LDB, N, NRHS

DOUBLE COMPLEX A(0:*), B(LDB,*)


SUBROUTINE ZPFTRS_64(TRANSR, UPLO, N, NRHS, A, B, LDB, INFO)


CHARACTER*1 TRANSR, UPLO

INTEGER*8 INFO, LDB, N, NRHS

DOUBLE COMPLEX A(0:*), B(LDB,*)


F95 INTERFACE
SUBROUTINE PFTRS(TRANSR, UPLO, N, NRHS, A, B, LDB, INFO)


INTEGER :: N, NRHS, LDB, INFO

CHARACTER(LEN=1) :: TRANSR, UPLO

COMPLEX(8), DIMENSION(:,:) :: B

COMPLEX(8), DIMENSION(:) :: A


SUBROUTINE PFTRS_64(TRANSR, UPLO, N, NRHS, A, B, LDB, INFO)


INTEGER(8) :: N, NRHS, LDB, INFO

CHARACTER(LEN=1) :: TRANSR, UPLO

COMPLEX(8), DIMENSION(:,:) :: B

COMPLEX(8), DIMENSION(:) :: A


C INTERFACE
#include <sunperf.h>

void zpftrs (char transr, char uplo, int n, int nrhs, doublecomplex *a,
doublecomplex *b, int ldb, int *info);


void zpftrs_64 (char transr, char uplo, long n, long  nrhs,  doublecom-
plex *a, doublecomplex *b, long ldb, long *info);

Description

Oracle Solaris Studio Performance Library                           zpftrs(3P)



NAME
       zpftrs  -  solve  a system of linear equations A*X = B with a Hermitian
       positive definite matrix A using the Cholesky factorization computed by
       ZPFTRF


SYNOPSIS
       SUBROUTINE ZPFTRS(TRANSR, UPLO, N, NRHS, A, B, LDB, INFO)


       CHARACTER*1 TRANSR, UPLO

       INTEGER INFO, LDB, N, NRHS

       DOUBLE COMPLEX A(0:*), B(LDB,*)


       SUBROUTINE ZPFTRS_64(TRANSR, UPLO, N, NRHS, A, B, LDB, INFO)


       CHARACTER*1 TRANSR, UPLO

       INTEGER*8 INFO, LDB, N, NRHS

       DOUBLE COMPLEX A(0:*), B(LDB,*)


   F95 INTERFACE
       SUBROUTINE PFTRS(TRANSR, UPLO, N, NRHS, A, B, LDB, INFO)


       INTEGER :: N, NRHS, LDB, INFO

       CHARACTER(LEN=1) :: TRANSR, UPLO

       COMPLEX(8), DIMENSION(:,:) :: B

       COMPLEX(8), DIMENSION(:) :: A


       SUBROUTINE PFTRS_64(TRANSR, UPLO, N, NRHS, A, B, LDB, INFO)


       INTEGER(8) :: N, NRHS, LDB, INFO

       CHARACTER(LEN=1) :: TRANSR, UPLO

       COMPLEX(8), DIMENSION(:,:) :: B

       COMPLEX(8), DIMENSION(:) :: A


   C INTERFACE
       #include <sunperf.h>

       void zpftrs (char transr, char uplo, int n, int nrhs, doublecomplex *a,
                 doublecomplex *b, int ldb, int *info);


       void zpftrs_64 (char transr, char uplo, long n, long  nrhs,  doublecom-
                 plex *a, doublecomplex *b, long ldb, long *info);


PURPOSE
       zpftrs  solves  a  system  of linear equations A*X = B with a Hermitian
       positive definite matrix A using the Cholesky factorization A =  U**H*U
       or A = L*L**H computed by ZPFTRF.


ARGUMENTS
       TRANSR (input)
                 TRANSR is CHARACTER*1
                 = 'N':  The Normal TRANSR of RFP A is stored;
                 = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.


       UPLO (input)
                 UPLO is CHARACTER*1
                 = 'U':  Upper triangle of RFP A is stored;
                 = 'L':  Lower triangle of RFP A is stored.


       N (input)
                 N is INTEGER
                 The order of the matrix A.  N >= 0.


       NRHS (input)
                 NRHS is INTEGER
                 The  number  of right hand sides, i.e., the number of columns
                 of the matrix B.  NRHS >= 0.


       A (input)
                 A is COMPLEX*16 array, dimension ( N*(N+1)/2 );
                 The triangular factor U or L from the Cholesky  factorization
                 of RFP A=U**H*U or RFP A=L*L**H, as computed by ZPFTRF.
                 See note below for more details about RFP A.


       B (input/output)
                 B is COMPLEX*16 array, dimension (LDB,NRHS)
                 On entry, the right hand side matrix B.
                 On exit, the solution matrix X.


       LDB (input)
                 LDB is INTEGER
                 The leading dimension of the array B.
                 LDB >= max(1,N).


       INFO (output)
                 INFO is INTEGER
                 = 0:  successful exit
                 < 0:  if INFO = -i, the i-th argument had an illegal value

FURTHER NOTES ON RFP FORMAT
       We first consider Standard Packed Format when N is even.
       We give an example where N = 6.

       AP is Upper             AP is Lower

       00 01 02 03 04 05       00
          11 12 13 14 15       10 11
             22 23 24 25       20 21 22
                33 34 35       30 31 32 33
                   44 45       40 41 42 43 44
                      55       50 51 52 53 54 55

       Let TRANSR = 'N'. RFP holds AP as follows:
       For  UPLO  =  'U'  the  upper trapezoid A(0:5,0:2) consists of the last
       three columns of AP upper. The lower triangle  A(4:6,0:2)  consists  of
       conjugate-transpose of the first three columns of AP upper.
       For  UPLO  =  'L'  the lower trapezoid A(1:6,0:2) consists of the first
       three columns of AP lower. The upper triangle  A(0:2,0:2)  consists  of
       conjugate-transpose of the last three columns of AP lower.
       To denote conjugate we place -- above the element. This covers the case
       N even and TRANSR = 'N'.

             RFP A                   RFP A

                                       -- -- --
            03 04 05                33 43 53
                                       -- --
            13 14 15                00 44 54
                                          --
            23 24 25                10 11 55

            33 34 35                20 21 22
            --
            00 44 45                30 31 32
            -- --
            01 11 55                40 41 42
            -- -- --
            02 12 22                50 51 52

       Now let TRANSR = 'C'. RFP A in both UPLO cases is just  the  conjugate-
       transpose of RFP A above. One therefore gets:

              RFP A                   RFP A

          -- -- -- --                -- -- -- -- -- --
          03 13 23 33 00 01 02    33 00 10 20 30 40 50
          -- -- -- -- --                -- -- -- -- --
          04 14 24 34 44 11 12    43 44 11 21 31 41 51
          -- -- -- -- -- --                -- -- -- --
          05 15 25 35 45 55 22    53 54 55 22 32 42 52

       We next  consider Standard Packed Format when N is odd.
       We give an example where N = 5.

         AP is Upper               AP is Lower

       00 01 02 03 04              00
          11 12 13 14              10 11
             22 23 24              20 21 22
                33 34              30 31 32 33
                   44              40 41 42 43 44

       Let TRANSR = 'N'. RFP holds AP as follows:
       For  UPLO  =  'U'  the  upper trapezoid A(0:4,0:2) consists of the last
       three columns of AP upper. The lower triangle  A(3:4,0:1)  consists  of
       conjugate-transpose of the first two   columns of AP upper.
       For  UPLO  =  'L'  the lower trapezoid A(0:4,0:2) consists of the first
       three columns of AP lower. The upper triangle  A(0:1,1:2)  consists  of
       conjugate-transpose of the last two   columns of AP lower.
       To denote conjugate we place -- above the element. This covers the case
       N odd  and TRANSR = 'N'.

             RFP A                   RFP A

                                       -- --
            02 03 04                00 33 43
                                          --
            12 13 14                10 11 44

            22 23 24                20 21 22
            --
            00 33 34                30 31 32
            -- --
            01 11 44                40 41 42

       Now let TRANSR = 'C'. RFP A in both UPLO cases is just  the  conjugate-
       transpose of RFP A above. One therefore gets:

               RFP A                   RFP A

         -- -- --                   -- -- -- -- -- --
         02 12 22 00 01             00 10 20 30 40 50
         -- -- -- --                   -- -- -- -- --
         03 13 23 33 11             33 11 21 31 41 51
         -- -- -- -- --                   -- -- -- --
         04 14 24 34 44             43 44 22 32 42 52



                                  7 Nov 2015                        zpftrs(3P)