sgerq2 - computes the RQ factorization of a general rectangular matrix using an unblocked algorithm
SUBROUTINE SGERQ2(M, N, A, LDA, TAU, WORK, INFO) INTEGER INFO, LDA, M, N REAL A(LDA,*), TAU(*), WORK(*) SUBROUTINE SGERQ2_64(M, N, A, LDA, TAU, WORK, INFO) INTEGER*8 INFO, LDA, M, N REAL A(LDA,*), TAU(*), WORK(*) F95 INTERFACE SUBROUTINE GERQ2(M, N, A, LDA, TAU, WORK, INFO) REAL, DIMENSION(:,:) :: A INTEGER :: M, N, LDA, INFO REAL, DIMENSION(:) :: TAU, WORK SUBROUTINE GERQ2_64(M, N, A, LDA, TAU, WORK, INFO) REAL, DIMENSION(:,:) :: A INTEGER(8) :: M, N, LDA, INFO REAL, DIMENSION(:) :: TAU, WORK C INTERFACE #include <sunperf.h> void sgerq2 (int m, int n, float *a, int lda, float *tau, int *info); void sgerq2_64 (long m, long n, float *a, long lda, float *tau, long *info);
Oracle Solaris Studio Performance Library sgerq2(3P)
NAME
sgerq2 - computes the RQ factorization of a general rectangular matrix
using an unblocked algorithm
SYNOPSIS
SUBROUTINE SGERQ2(M, N, A, LDA, TAU, WORK, INFO)
INTEGER INFO, LDA, M, N
REAL A(LDA,*), TAU(*), WORK(*)
SUBROUTINE SGERQ2_64(M, N, A, LDA, TAU, WORK, INFO)
INTEGER*8 INFO, LDA, M, N
REAL A(LDA,*), TAU(*), WORK(*)
F95 INTERFACE
SUBROUTINE GERQ2(M, N, A, LDA, TAU, WORK, INFO)
REAL, DIMENSION(:,:) :: A
INTEGER :: M, N, LDA, INFO
REAL, DIMENSION(:) :: TAU, WORK
SUBROUTINE GERQ2_64(M, N, A, LDA, TAU, WORK, INFO)
REAL, DIMENSION(:,:) :: A
INTEGER(8) :: M, N, LDA, INFO
REAL, DIMENSION(:) :: TAU, WORK
C INTERFACE
#include <sunperf.h>
void sgerq2 (int m, int n, float *a, int lda, float *tau, int *info);
void sgerq2_64 (long m, long n, float *a, long lda, float *tau, long
*info);
PURPOSE
sgerq2 computes an RQ factorization of a real m by n matrix A: A = R *
Q.
ARGUMENTS
M (input)
M is INTEGER
The number of rows of the matrix A. M >= 0.
N (input)
N is INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output)
A is REAL array, dimension (LDA,N)
On entry, the M by N matrix A.
On exit, if M <= N, the upper triangle of the subarray
A(1:M,N-M+1:n) contains the m by m upper triangular matrix R;
if M >= N, the elements on and above the (M-N)-th subdiagonal
contain the M by N upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the orthogonal matrix
Q as a product of elementary reflectors (see Further
Details).
LDA (input)
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output)
TAU is REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (output)
WORK is REAL array, dimension (M)
INFO (output)
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
FURTHER DETAILS
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
A(m-k+i,1:n-k+i-1), and tau in TAU(i).
7 Nov 2015 sgerq2(3P)