cpbtrs - solve a system of linear equations A*X = B with a Hermitian positive definite band matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPBTRF
SUBROUTINE CPBTRS(UPLO, N, KD, NRHS, A, LDA, B, LDB, INFO) CHARACTER*1 UPLO COMPLEX A(LDA,*), B(LDB,*) INTEGER N, KD, NRHS, LDA, LDB, INFO SUBROUTINE CPBTRS_64(UPLO, N, KD, NRHS, A, LDA, B, LDB, INFO) CHARACTER*1 UPLO COMPLEX A(LDA,*), B(LDB,*) INTEGER*8 N, KD, NRHS, LDA, LDB, INFO F95 INTERFACE SUBROUTINE PBTRS(UPLO, N, KD, NRHS, A, LDA, B, LDB, INFO) CHARACTER(LEN=1) :: UPLO COMPLEX, DIMENSION(:,:) :: A, B INTEGER :: N, KD, NRHS, LDA, LDB, INFO SUBROUTINE PBTRS_64(UPLO, N, KD, NRHS, A, LDA, B, LDB, INFO) CHARACTER(LEN=1) :: UPLO COMPLEX, DIMENSION(:,:) :: A, B INTEGER(8) :: N, KD, NRHS, LDA, LDB, INFO C INTERFACE #include <sunperf.h> void cpbtrs(char uplo, int n, int kd, int nrhs, complex *a, int lda, complex *b, int ldb, int *info); void cpbtrs_64(char uplo, long n, long kd, long nrhs, complex *a, long lda, complex *b, long ldb, long *info);
Oracle Solaris Studio Performance Library cpbtrs(3P)
NAME
cpbtrs - solve a system of linear equations A*X = B with a Hermitian
positive definite band matrix A using the Cholesky factorization A =
U**H*U or A = L*L**H computed by CPBTRF
SYNOPSIS
SUBROUTINE CPBTRS(UPLO, N, KD, NRHS, A, LDA, B, LDB, INFO)
CHARACTER*1 UPLO
COMPLEX A(LDA,*), B(LDB,*)
INTEGER N, KD, NRHS, LDA, LDB, INFO
SUBROUTINE CPBTRS_64(UPLO, N, KD, NRHS, A, LDA, B, LDB, INFO)
CHARACTER*1 UPLO
COMPLEX A(LDA,*), B(LDB,*)
INTEGER*8 N, KD, NRHS, LDA, LDB, INFO
F95 INTERFACE
SUBROUTINE PBTRS(UPLO, N, KD, NRHS, A, LDA, B, LDB, INFO)
CHARACTER(LEN=1) :: UPLO
COMPLEX, DIMENSION(:,:) :: A, B
INTEGER :: N, KD, NRHS, LDA, LDB, INFO
SUBROUTINE PBTRS_64(UPLO, N, KD, NRHS, A, LDA, B, LDB,
INFO)
CHARACTER(LEN=1) :: UPLO
COMPLEX, DIMENSION(:,:) :: A, B
INTEGER(8) :: N, KD, NRHS, LDA, LDB, INFO
C INTERFACE
#include <sunperf.h>
void cpbtrs(char uplo, int n, int kd, int nrhs, complex *a, int lda,
complex *b, int ldb, int *info);
void cpbtrs_64(char uplo, long n, long kd, long nrhs, complex *a, long
lda, complex *b, long ldb, long *info);
PURPOSE
cpbtrs solves a system of linear equations A*X = B with a Hermitian
positive definite band matrix A using the Cholesky factorization A =
U**H*U or A = L*L**H computed by CPBTRF.
ARGUMENTS
UPLO (input)
= 'U': Upper triangular factor stored in A;
= 'L': Lower triangular factor stored in A.
N (input) The order of the matrix A. N >= 0.
KD (input)
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS (input)
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) The triangular factor U or L from the Cholesky factorization
A = U**H*U or A = L*L**H of the band matrix A, stored in the
first KD+1 rows of the array. The j-th column of U or L is
stored in the j-th column of the array A as follows: if UPLO
='U', A(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; if UPLO
='L', A(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
LDA (input)
The leading dimension of the array A. LDA >= KD+1.
B (input/output)
On entry, the right hand side matrix B. On exit, the solu-
tion matrix X.
LDB (input)
The leading dimension of the array B. LDB >= max(1,N).
INFO (output)
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
7 Nov 2015 cpbtrs(3P)