Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

zstein (3p)

Name

zstein - compute the eigenvectors of a real symmetric tridiagonal matrix T corresponding to specified eigenvalues, using inverse itera- tion

Synopsis

SUBROUTINE ZSTEIN(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK,
IFAIL, INFO)

DOUBLE COMPLEX Z(LDZ,*)
INTEGER N, M, LDZ, INFO
INTEGER IBLOCK(*), ISPLIT(*), IWORK(*), IFAIL(*)
DOUBLE PRECISION D(*), E(*), W(*), WORK(*)

SUBROUTINE ZSTEIN_64(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
IWORK, IFAIL, INFO)

DOUBLE COMPLEX Z(LDZ,*)
INTEGER*8 N, M, LDZ, INFO
INTEGER*8 IBLOCK(*), ISPLIT(*), IWORK(*), IFAIL(*)
DOUBLE PRECISION D(*), E(*), W(*), WORK(*)




F95 INTERFACE
SUBROUTINE STEIN(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
IWORK, IFAIL, INFO)

COMPLEX(8), DIMENSION(:,:) :: Z
INTEGER :: N, M, LDZ, INFO
INTEGER, DIMENSION(:) :: IBLOCK, ISPLIT, IWORK, IFAIL
REAL(8), DIMENSION(:) :: D, E, W, WORK

SUBROUTINE STEIN_64(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ,
WORK, IWORK, IFAIL, INFO)

COMPLEX(8), DIMENSION(:,:) :: Z
INTEGER(8) :: N, M, LDZ, INFO
INTEGER(8), DIMENSION(:) :: IBLOCK, ISPLIT, IWORK, IFAIL
REAL(8), DIMENSION(:) :: D, E, W, WORK




C INTERFACE
#include <sunperf.h>

void zstein(int n, double *d, double *e, int m, double *w, int *iblock,
int *isplit, doublecomplex  *z,  int  ldz,  int  *ifail,  int
*info);

void  zstein_64(long  n,  double *d, double *e, long m, double *w, long
*iblock, long  *isplit,  doublecomplex  *z,  long  ldz,  long
*ifail, long *info);

Description

Oracle Solaris Studio Performance Library                           zstein(3P)



NAME
       zstein  -  compute  the  eigenvectors  of  a real symmetric tridiagonal
       matrix T corresponding to specified eigenvalues, using  inverse  itera-
       tion


SYNOPSIS
       SUBROUTINE ZSTEIN(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK,
             IFAIL, INFO)

       DOUBLE COMPLEX Z(LDZ,*)
       INTEGER N, M, LDZ, INFO
       INTEGER IBLOCK(*), ISPLIT(*), IWORK(*), IFAIL(*)
       DOUBLE PRECISION D(*), E(*), W(*), WORK(*)

       SUBROUTINE ZSTEIN_64(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
             IWORK, IFAIL, INFO)

       DOUBLE COMPLEX Z(LDZ,*)
       INTEGER*8 N, M, LDZ, INFO
       INTEGER*8 IBLOCK(*), ISPLIT(*), IWORK(*), IFAIL(*)
       DOUBLE PRECISION D(*), E(*), W(*), WORK(*)




   F95 INTERFACE
       SUBROUTINE STEIN(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
              IWORK, IFAIL, INFO)

       COMPLEX(8), DIMENSION(:,:) :: Z
       INTEGER :: N, M, LDZ, INFO
       INTEGER, DIMENSION(:) :: IBLOCK, ISPLIT, IWORK, IFAIL
       REAL(8), DIMENSION(:) :: D, E, W, WORK

       SUBROUTINE STEIN_64(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ,
              WORK, IWORK, IFAIL, INFO)

       COMPLEX(8), DIMENSION(:,:) :: Z
       INTEGER(8) :: N, M, LDZ, INFO
       INTEGER(8), DIMENSION(:) :: IBLOCK, ISPLIT, IWORK, IFAIL
       REAL(8), DIMENSION(:) :: D, E, W, WORK




   C INTERFACE
       #include <sunperf.h>

       void zstein(int n, double *d, double *e, int m, double *w, int *iblock,
                 int *isplit, doublecomplex  *z,  int  ldz,  int  *ifail,  int
                 *info);

       void  zstein_64(long  n,  double *d, double *e, long m, double *w, long
                 *iblock, long  *isplit,  doublecomplex  *z,  long  ldz,  long
                 *ifail, long *info);



PURPOSE
       zstein computes the eigenvectors of a real symmetric tridiagonal matrix
       T corresponding to specified eigenvalues, using inverse iteration.

       The maximum number of iterations allowed for each eigenvector is speci-
       fied by an internal parameter MAXITS (currently set to 5).

       Although the eigenvectors are real, they are stored in a complex array,
       which may be passed to ZUNMTR or ZUPMTR for back
       transformation to the eigenvectors of a complex Hermitian matrix  which
       was reduced to tridiagonal form.


ARGUMENTS
       N (input) The order of the matrix.  N >= 0.


       D (input) The n diagonal elements of the tridiagonal matrix T.


       E (input) The  (n-1)  subdiagonal elements of the tridiagonal matrix T,
                 stored in elements 1 to N-1; E(N) need not be set.


       M (input) The number of eigenvectors to be found.  0 <= M <= N.


       W (input) The first M elements of W contain the eigenvalues  for  which
                 eigenvectors  are  to be computed.  The eigenvalues should be
                 grouped by split-off  block  and  ordered  from  smallest  to
                 largest  within  the block.  ( The output array W from SSTEBZ
                 with ORDER = 'B' is expected here. )


       IBLOCK (input)
                 The submatrix indices associated with the  corresponding  ei-
                 genvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to the
                 first submatrix from the top, =2 if W(i) belongs to the  sec-
                 ond submatrix, etc.  ( The output array IBLOCK from SSTEBZ is
                 expected here. )


       ISPLIT (input)
                 The splitting points, at which T breaks up into  submatrices.
                 The  first  submatrix consists of rows/columns 1 to ISPLIT( 1
                 ), the second of rows/columns ISPLIT( 1 )+1 through ISPLIT( 2
                 ),  etc.   (  The output array ISPLIT from SSTEBZ is expected
                 here. )


       Z (output)
                 The computed eigenvectors.  The eigenvector  associated  with
                 the  eigenvalue  W(i) is stored in the i-th column of Z.  Any
                 vector which fails to converge is set to its current  iterate
                 after  MAXITS  iterations.  The imaginary parts of the eigen-
                 vectors are set to zero.


       LDZ (input)
                 The leading dimension of the array Z.  LDZ >= max(1,N).


       WORK (workspace)
                 dimension(5*N)

       IWORK (workspace)
                 dimension(N)

       IFAIL (output) INTEGER array, dimension (M)
                 On normal exit, all elements of IFAIL are zero.   If  one  or
                 more  eigenvectors  fail to converge after MAXITS iterations,
                 then their indices are stored in array IFAIL.


       INFO (output)
                 = 0: successful exit
                 < 0: if INFO = -i, the i-th argument had an illegal value
                 > 0: if INFO = i, then i eigenvectors failed to  converge  in
                 MAXITS  iterations.  Their indices are stored in array IFAIL.




                                  7 Nov 2015                        zstein(3P)