zla_gbrpvgrw - compute the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix
DOUBLE PRECISION FUNCTION ZLA_GBRPVGRW(N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB) INTEGER N, KL, KU, NCOLS, LDAB, LDAFB DOUBLE COMPLEX AB(LDAB,*), AFB(LDAFB,*) DOUBLE PRECISION FUNCTION ZLA_GBRPVGRW_64(N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB) INTEGER*8 N, KL, KU, NCOLS, LDAB, LDAFB DOUBLE COMPLEX AB(LDAB,*), AFB(LDAFB,*) F95 INTERFACE REAL(8) FUNCTION LA_GBRPVGRW(N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB) INTEGER :: N, KL, KU, NCOLS, LDAB, LDAFB COMPLEX(8), DIMENSION(:,:) :: AB, AFB REAL(8) FUNCTION LA_GBRPVGRW_64(N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB) INTEGER(8) :: N, KL, KU, NCOLS, LDAB, LDAFB COMPLEX(8), DIMENSION(:,:) :: AB, AFB C INTERFACE #include <sunperf.h> double zla_gbrpvgrw (int n, int kl, int ku, int ncols, doublecomplex *ab, int ldab, doublecomplex *afb, int ldafb); double zla_gbrpvgrw_64 (long n, long kl, long ku, long ncols, double- complex *ab, long ldab, doublecomplex *afb, long ldafb); SH PURPOSE zla_gbrpvgrw computes the reciprocal pivot growth factor norm(A)/norm(U). The "max absolute element" norm is used. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution X, estimated condition num- bers, and error bounds could be unreliable.
Oracle Solaris Studio Performance Library zla_gbrpvgrw(3P)
NAME
zla_gbrpvgrw - compute the reciprocal pivot growth factor
norm(A)/norm(U) for a general banded matrix
SYNOPSIS
DOUBLE PRECISION FUNCTION ZLA_GBRPVGRW(N, KL, KU, NCOLS, AB, LDAB, AFB,
LDAFB)
INTEGER N, KL, KU, NCOLS, LDAB, LDAFB
DOUBLE COMPLEX AB(LDAB,*), AFB(LDAFB,*)
DOUBLE PRECISION FUNCTION ZLA_GBRPVGRW_64(N, KL, KU, NCOLS, AB, LDAB,
AFB, LDAFB)
INTEGER*8 N, KL, KU, NCOLS, LDAB, LDAFB
DOUBLE COMPLEX AB(LDAB,*), AFB(LDAFB,*)
F95 INTERFACE
REAL(8) FUNCTION LA_GBRPVGRW(N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB)
INTEGER :: N, KL, KU, NCOLS, LDAB, LDAFB
COMPLEX(8), DIMENSION(:,:) :: AB, AFB
REAL(8) FUNCTION LA_GBRPVGRW_64(N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB)
INTEGER(8) :: N, KL, KU, NCOLS, LDAB, LDAFB
COMPLEX(8), DIMENSION(:,:) :: AB, AFB
C INTERFACE
#include <sunperf.h>
double zla_gbrpvgrw (int n, int kl, int ku, int ncols, doublecomplex
*ab, int ldab, doublecomplex *afb, int ldafb);
double zla_gbrpvgrw_64 (long n, long kl, long ku, long ncols, double-
complex *ab, long ldab, doublecomplex *afb, long ldafb);
SH PURPOSE zla_gbrpvgrw computes the reciprocal pivot growth
factor norm(A)/norm(U). The "max absolute element" norm is
used. If this is much less than 1, the stability of the LU
factorization of the (equilibrated) matrix A could be poor.
This also means that the solution X, estimated condition num-
bers, and error bounds could be unreliable.
ARGUMENTS
N (input)
N is INTEGER
The number of linear equations, i.e., the order of the matrix
A. N >= 0.
KL (input)
KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input)
KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NCOLS (input)
NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.
AB (input)
AB is COMPLEX*16 array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
LDAB (input)
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
AFB (input)
AFB is COMPLEX*16 array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as com-
puted by ZGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
LDAFB (input)
LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
7 Nov 2015 zla_gbrpvgrw(3P)