dormrq - N matrix C with Q*C or Q**T*C or C*Q**T or C*Q.
SUBROUTINE DORMRQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER*1 SIDE, TRANS INTEGER M, N, K, LDA, LDC, LWORK, INFO DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*) SUBROUTINE DORMRQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER*1 SIDE, TRANS INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*) F95 INTERFACE SUBROUTINE ORMRQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER(LEN=1) :: SIDE, TRANS INTEGER :: M, N, K, LDA, LDC, LWORK, INFO REAL(8), DIMENSION(:) :: TAU, WORK REAL(8), DIMENSION(:,:) :: A, C SUBROUTINE ORMRQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER(LEN=1) :: SIDE, TRANS INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO REAL(8), DIMENSION(:) :: TAU, WORK REAL(8), DIMENSION(:,:) :: A, C C INTERFACE #include <sunperf.h> void dormrq(char side, char trans, int m, int n, int k, double *a, int lda, double *tau, double *c, int ldc, int *info); void dormrq_64(char side, char trans, long m, long n, long k, double *a, long lda, double *tau, double *c, long ldc, long *info);
Oracle Solaris Studio Performance Library dormrq(3P)
NAME
dormrq - overwrite the general real M-by-N matrix C with Q*C or Q**T*C
or C*Q**T or C*Q.
SYNOPSIS
SUBROUTINE DORMRQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)
CHARACTER*1 SIDE, TRANS
INTEGER M, N, K, LDA, LDC, LWORK, INFO
DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)
SUBROUTINE DORMRQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)
CHARACTER*1 SIDE, TRANS
INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)
F95 INTERFACE
SUBROUTINE ORMRQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)
CHARACTER(LEN=1) :: SIDE, TRANS
INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
REAL(8), DIMENSION(:) :: TAU, WORK
REAL(8), DIMENSION(:,:) :: A, C
SUBROUTINE ORMRQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C,
LDC, WORK, LWORK, INFO)
CHARACTER(LEN=1) :: SIDE, TRANS
INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
REAL(8), DIMENSION(:) :: TAU, WORK
REAL(8), DIMENSION(:,:) :: A, C
C INTERFACE
#include <sunperf.h>
void dormrq(char side, char trans, int m, int n, int k, double *a, int
lda, double *tau, double *c, int ldc, int *info);
void dormrq_64(char side, char trans, long m, long n, long k, double
*a, long lda, double *tau, double *c, long ldc, long *info);
PURPOSE
dormrq overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k elemen-
tary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DGERQF. Q is of order M if SIDE = 'L' and of order N if
SIDE = 'R'.
ARGUMENTS
SIDE (input)
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input)
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) The number of rows of the matrix C. M >= 0.
N (input) The number of columns of the matrix C. N >= 0.
K (input) The number of elementary reflectors whose product defines the
matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K
>= 0.
A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row
must contain the vector which defines the elementary reflec-
tor H(i), for i = 1,2,...,k, as returned by DGERQF in the
last k rows of its array argument A. A is modified by the
routine but restored on exit.
LDA (input)
The leading dimension of the array A. LDA >= max(1,K).
TAU (input)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGERQF.
C (input/output)
On entry, the M-by-N matrix C. On exit, C is overwritten by
Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input)
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input)
The dimension of the array WORK. If SIDE = 'L', LWORK >=
max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum per-
formance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if
SIDE = 'R', where NB is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output)
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
7 Nov 2015 dormrq(3P)