cpftri - compute the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization computed by CPFTRF
SUBROUTINE CPFTRI(TRANSR, UPLO, N, A, INFO) CHARACTER*1 TRANSR, UPLO INTEGER INFO, N COMPLEX A(0:*) SUBROUTINE CPFTRI_64(TRANSR, UPLO, N, A, INFO) CHARACTER*1 TRANSR, UPLO INTEGER*8 INFO, N COMPLEX A(0:*) F95 INTERFACE SUBROUTINE PFTRI(TRANSR, UPLO, N, A, INFO) INTEGER :: N, INFO CHARACTER(LEN=1) :: TRANSR, UPLO COMPLEX, DIMENSION(:) :: A SUBROUTINE PFTRI_64(TRANSR, UPLO, N, A, INFO) INTEGER(8) :: N, INFO CHARACTER(LEN=1) :: TRANSR, UPLO COMPLEX, DIMENSION(:) :: A C INTERFACE #include <sunperf.h> void cpftri (char transr, char uplo, int n, floatcomplex *a, int *info); void cpftri_64 (char transr, char uplo, long n, floatcomplex *a, long *info);
Oracle Solaris Studio Performance Library                           cpftri(3P)
NAME
       cpftri  -  compute the inverse of a complex Hermitian positive definite
       matrix A using the Cholesky factorization computed by CPFTRF
SYNOPSIS
       SUBROUTINE CPFTRI(TRANSR, UPLO, N, A, INFO)
       CHARACTER*1 TRANSR, UPLO
       INTEGER INFO, N
       COMPLEX A(0:*)
       SUBROUTINE CPFTRI_64(TRANSR, UPLO, N, A, INFO)
       CHARACTER*1 TRANSR, UPLO
       INTEGER*8 INFO, N
       COMPLEX A(0:*)
   F95 INTERFACE
       SUBROUTINE PFTRI(TRANSR, UPLO, N, A, INFO)
       INTEGER :: N, INFO
       CHARACTER(LEN=1) :: TRANSR, UPLO
       COMPLEX, DIMENSION(:) :: A
       SUBROUTINE PFTRI_64(TRANSR, UPLO, N, A, INFO)
       INTEGER(8) :: N, INFO
       CHARACTER(LEN=1) :: TRANSR, UPLO
       COMPLEX, DIMENSION(:) :: A
   C INTERFACE
       #include <sunperf.h>
       void cpftri (char transr,  char  uplo,  int  n,  floatcomplex  *a,  int
                 *info);
       void  cpftri_64  (char transr, char uplo, long n, floatcomplex *a, long
                 *info);
PURPOSE
       cpftri computes the inverse of a complex  Hermitian  positive  definite
       matrix A using the Cholesky factorization A = U**H*U or A = L*L**H com-
       puted by CPFTRF.
ARGUMENTS
       TRANSR (input)
                 TRANSR is CHARACTER*1
                 = 'N':  The Normal TRANSR of RFP A is stored;
                 = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
       UPLO (input)
                 UPLO is CHARACTER*1
                 = 'U':  Upper triangle of A is stored;
                 = 'L':  Lower triangle of A is stored.
       N (input)
                 N is INTEGER
                 The order of the matrix A.  N >= 0.
       A (input/output)
                 A is COMPLEX array, dimension ( N*(N+1)/2 );
                 On entry, the Hermitian matrix A in RFP format. RFP format is
                 described  by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
                 then RFP A is (0:N,0:k-1) when N is even;  k=N/2.  RFP  A  is
                 (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
                 the Conjugate-transpose of RFP A as  defined  when  TRANSR  =
                 'N'. The contents of RFP A are defined by UPLO as follows: If
                 UPLO = 'U' the RFP A contains the nt elements of upper packed
                 A.  If  UPLO  =  'L' the RFP A contains the elements of lower
                 packed A. The LDA of RFP A is (N+1)/2 when TRANSR =  is  odd.
                 See the Note below for more details.
                 On exit, the Hermitian inverse of the original matrix, in the
                 same storage format.
       INFO (output)
                 INFO is INTEGER
                 = 0:  successful exit
                 < 0:  if INFO = -i, the i-th argument had an illegal value
                 > 0:  if INFO = i, the (i,i) element of the factor U or L  is
                 zero, and the inverse could not be computed.
FURTHER NOTES ON RFP FORMAT
       We first consider Standard Packed Format when N is even.
       We give an example where N = 6.
       AP is Upper             AP is Lower
       00 01 02 03 04 05       00
          11 12 13 14 15       10 11
             22 23 24 25       20 21 22
                33 34 35       30 31 32 33
                   44 45       40 41 42 43 44
                      55       50 51 52 53 54 55
       Let TRANSR = 'N'. RFP holds AP as follows:
       For  UPLO  =  'U'  the  upper trapezoid A(0:5,0:2) consists of the last
       three columns of AP upper. The lower triangle  A(4:6,0:2)  consists  of
       conjugate-transpose of the first three columns of AP upper.
       For  UPLO  =  'L'  the lower trapezoid A(1:6,0:2) consists of the first
       three columns of AP lower. The upper triangle  A(0:2,0:2)  consists  of
       conjugate-transpose of the last three columns of AP lower.
       To denote conjugate we place -- above the element. This covers the case
       N even and TRANSR = 'N'.
             RFP A                   RFP A
                                       -- -- --
            03 04 05                33 43 53
                                       -- --
            13 14 15                00 44 54
                                          --
            23 24 25                10 11 55
            33 34 35                20 21 22
            --
            00 44 45                30 31 32
            -- --
            01 11 55                40 41 42
            -- -- --
            02 12 22                50 51 52
       Now let TRANSR = 'C'. RFP A in both UPLO cases is just  the  conjugate-
       transpose of RFP A above. One therefore gets:
              RFP A                   RFP A
          -- -- -- --                -- -- -- -- -- --
          03 13 23 33 00 01 02    33 00 10 20 30 40 50
          -- -- -- -- --                -- -- -- -- --
          04 14 24 34 44 11 12    43 44 11 21 31 41 51
          -- -- -- -- -- --                -- -- -- --
          05 15 25 35 45 55 22    53 54 55 22 32 42 52
       We next  consider Standard Packed Format when N is odd.
       We give an example where N = 5.
         AP is Upper               AP is Lower
       00 01 02 03 04              00
          11 12 13 14              10 11
             22 23 24              20 21 22
                33 34              30 31 32 33
                   44              40 41 42 43 44
       Let TRANSR = 'N'. RFP holds AP as follows:
       For  UPLO  =  'U'  the  upper trapezoid A(0:4,0:2) consists of the last
       three columns of AP upper. The lower triangle  A(3:4,0:1)  consists  of
       conjugate-transpose of the first two   columns of AP upper.
       For  UPLO  =  'L'  the lower trapezoid A(0:4,0:2) consists of the first
       three columns of AP lower. The upper triangle  A(0:1,1:2)  consists  of
       conjugate-transpose of the last two   columns of AP lower.
       To denote conjugate we place -- above the element. This covers the case
       N odd  and TRANSR = 'N'.
             RFP A                   RFP A
                                       -- --
            02 03 04                00 33 43
                                          --
            12 13 14                10 11 44
            22 23 24                20 21 22
            --
            00 33 34                30 31 32
            -- --
            01 11 44                40 41 42
       Now let TRANSR = 'C'. RFP A in both UPLO cases is just  the  conjugate-
       transpose of RFP A above. One therefore gets:
               RFP A                   RFP A
         -- -- --                   -- -- -- -- -- --
         02 12 22 00 01             00 10 20 30 40 50
         -- -- -- --                   -- -- -- -- --
         03 13 23 33 11             33 11 21 31 41 51
         -- -- -- -- --                   -- -- -- --
         04 14 24 34 44             43 44 22 32 42 52
                                  7 Nov 2015                        cpftri(3P)