Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

dstevr (3p)

Name

dstevr - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T

Synopsis

SUBROUTINE DSTEVR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

CHARACTER*1 JOBZ, RANGE
INTEGER N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
INTEGER ISUPPZ(*), IWORK(*)
DOUBLE PRECISION VL, VU, ABSTOL
DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)

SUBROUTINE DSTEVR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

CHARACTER*1 JOBZ, RANGE
INTEGER*8 N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
INTEGER*8 ISUPPZ(*), IWORK(*)
DOUBLE PRECISION VL, VU, ABSTOL
DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)




F95 INTERFACE
SUBROUTINE STEVR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

CHARACTER(LEN=1) :: JOBZ, RANGE
INTEGER :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
REAL(8) :: VL, VU, ABSTOL
REAL(8), DIMENSION(:) :: D, E, W, WORK
REAL(8), DIMENSION(:,:) :: Z

SUBROUTINE STEVR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

CHARACTER(LEN=1) :: JOBZ, RANGE
INTEGER(8) :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
REAL(8) :: VL, VU, ABSTOL
REAL(8), DIMENSION(:) :: D, E, W, WORK
REAL(8), DIMENSION(:,:) :: Z




C INTERFACE
#include <sunperf.h>

void dstevr(char jobz, char range, int n, double *d, double *e,  double
vl,  double vu, int il, int iu, double abstol, int *m, double
*w, double *z, int ldz, int *isuppz, int *info);

void dstevr_64(char jobz, char range, long n,  double  *d,  double  *e,
double  vl,  double vu, long il, long iu, double abstol, long
*m, double *w,  double  *z,  long  ldz,  long  *isuppz,  long
*info);

Description

Oracle Solaris Studio Performance Library                           dstevr(3P)



NAME
       dstevr  - compute selected eigenvalues and, optionally, eigenvectors of
       a real symmetric tridiagonal matrix T


SYNOPSIS
       SUBROUTINE DSTEVR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
             Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

       CHARACTER*1 JOBZ, RANGE
       INTEGER N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
       INTEGER ISUPPZ(*), IWORK(*)
       DOUBLE PRECISION VL, VU, ABSTOL
       DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)

       SUBROUTINE DSTEVR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
             W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

       CHARACTER*1 JOBZ, RANGE
       INTEGER*8 N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
       INTEGER*8 ISUPPZ(*), IWORK(*)
       DOUBLE PRECISION VL, VU, ABSTOL
       DOUBLE PRECISION D(*), E(*), W(*), Z(LDZ,*), WORK(*)




   F95 INTERFACE
       SUBROUTINE STEVR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
              W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

       CHARACTER(LEN=1) :: JOBZ, RANGE
       INTEGER :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
       INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
       REAL(8) :: VL, VU, ABSTOL
       REAL(8), DIMENSION(:) :: D, E, W, WORK
       REAL(8), DIMENSION(:,:) :: Z

       SUBROUTINE STEVR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
              M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

       CHARACTER(LEN=1) :: JOBZ, RANGE
       INTEGER(8) :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
       INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
       REAL(8) :: VL, VU, ABSTOL
       REAL(8), DIMENSION(:) :: D, E, W, WORK
       REAL(8), DIMENSION(:,:) :: Z




   C INTERFACE
       #include <sunperf.h>

       void dstevr(char jobz, char range, int n, double *d, double *e,  double
                 vl,  double vu, int il, int iu, double abstol, int *m, double
                 *w, double *z, int ldz, int *isuppz, int *info);

       void dstevr_64(char jobz, char range, long n,  double  *d,  double  *e,
                 double  vl,  double vu, long il, long iu, double abstol, long
                 *m, double *w,  double  *z,  long  ldz,  long  *isuppz,  long
                 *info);



PURPOSE
       dstevr computes selected eigenvalues and, optionally, eigenvectors of a
       real symmetric tridiagonal matrix T.  Eigenvalues and eigenvectors  can
       be  selected  by  specifying  either  a  range  of values or a range of
       indices for the desired eigenvalues.

       Whenever possible, DSTEVR calls DSTEGR to compute the
       eigenspectrum using Relatively Robust Representations.  DSTEGR computes
       eigenvalues  by  the  dqds algorithm, while orthogonal eigenvectors are
       computed from various "good" L D L^T  representations  (also  known  as
       Relatively  Robust  Representations). Gram-Schmidt orthogonalization is
       avoided as far as possible. More specifically, the various steps of the
       algorithm are as follows. For the i-th unreduced block of T,
          (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
               is a relatively robust representation,
          (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
              relative accuracy by the dqds algorithm,
          (c) If there is a cluster of close eigenvalues, "choose" sigma_i
              close to the cluster, and go to step (a),
          (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
              compute the corresponding eigenvector by forming a
              rank-revealing twisted factorization.
       The desired accuracy of the output can be specified by the input param-
       eter ABSTOL.

       For more details, see "A new O(n^2) algorithm for the symmetric  tridi-
       agonal  eigenvalue/eigenvector  problem", by Inderjit Dhillon, Computer
       Science Division Technical Report No. UCB//CSD-97-971, UC Berkeley, May
       1997.

       Note  1  :  DSTEVR  calls DSTEGR when the full spectrum is requested on
       machines which conform to the ieee-754 floating point standard.  DSTEVR
       calls DSTEBZ and DSTEIN on non-ieee machines and
       when partial spectrum requests are made.

       Normal execution of DSTEGR may create NaNs and infinities and hence may
       abort due to a floating point exception in environments  which  do  not
       handle NaNs and infinities in the ieee standard default manner.


ARGUMENTS
       JOBZ (input)
                 = 'N':  Compute eigenvalues only;
                 = 'V':  Compute eigenvalues and eigenvectors.


       RANGE (input)
                 = 'A': all eigenvalues will be found.
                 = 'V': all eigenvalues in the half-open interval (VL,VU] will
                 be found.  = 'I': the IL-th through IU-th eigenvalues will be
                 found.


       N (input) The order of the matrix.  N >= 0.


       D (input/output)
                 On  entry,  the n diagonal elements of the tridiagonal matrix
                 A.  On exit, D may be multiplied by a constant factor  chosen
                 to avoid over/underflow in computing the eigenvalues.


       E (input/output)
                 On  entry,  the (n-1) subdiagonal elements of the tridiagonal
                 matrix A in elements 1 to N-1 of E; E(N) need not be set.  On
                 exit,  E  may  be  multiplied  by a constant factor chosen to
                 avoid over/underflow in computing the eigenvalues.


       VL (input)
                 If RANGE='V', the lower and upper bounds of the  interval  to
                 be  searched  for  eigenvalues.  VL  < VU.  Not referenced if
                 RANGE = 'A' or 'I'.


       VU (input)
                 See the description of VL.


       IL (input)
                 If RANGE='I', the indices (in ascending order) of the  small-
                 est and largest eigenvalues to be returned.  1 <= IL <= IU <=
                 N, if N > 0; IL = 1 and IU = 0 if N = 0.  Not  referenced  if
                 RANGE = 'A' or 'V'.


       IU (input)
                 See the description of IL.


       ABSTOL (input)
                 The absolute error tolerance for the eigenvalues.  An approx-
                 imate eigenvalue is accepted as converged when it  is  deter-
                 mined to lie in an interval [a,b] of width less than or equal
                 to

                 ABSTOL + EPS *   max( |a|,|b| ) ,

                 where EPS is the machine precision.  If ABSTOL is  less  than
                 or  equal  to zero, then  EPS*|T|  will be used in its place,
                 where |T| is the 1-norm of the tridiagonal matrix obtained by
                 reducing A to tridiagonal form.

                 See  "Computing  Small Singular Values of Bidiagonal Matrices
                 with Guaranteed High Relative Accuracy," by Demmel and Kahan,
                 LAPACK Working Note #3.

                 If high relative accuracy is important, set ABSTOL to DLAMCH(
                 'Safe minimum' ).  Doing so will guarantee  that  eigenvalues
                 are  computed  to  high  relative  accuracy  when possible in
                 future releases.  The current code does not make any  guaran-
                 tees  about high relative accuracy, but future releases will.
                 See J. Barlow and J. Demmel, "Computing Accurate Eigensystems
                 of  Scaled Diagonally Dominant Matrices", LAPACK Working Note
                 #7, for a discussion of which matrices define their eigenval-
                 ues to high relative accuracy.


       M (output)
                 The  total  number  of  eigenvalues  found.  0 <= M <= N.  If
                 RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.


       W (output)
                 The first M elements  contain  the  selected  eigenvalues  in
                 ascending order.


       Z (output)
                 If  JOBZ  =  'V',  then if INFO = 0, the first M columns of Z
                 contain the orthonormal eigenvectors of the matrix  A  corre-
                 sponding to the selected eigenvalues, with the i-th column of
                 Z holding the eigenvector associated with  W(i).   Note:  the
                 user  must ensure that at least max(1,M) columns are supplied
                 in the array Z; if RANGE = 'V', the exact value of M  is  not
                 known in advance and an upper bound must be used.


       LDZ (input)
                 The  leading dimension of the array Z.  LDZ >= 1, and if JOBZ
                 = 'V', LDZ >= max(1,N).


       ISUPPZ (output) INTEGER array, dimension (2*max(1,M))
                 The support of the eigenvectors in Z, i.e., the indices indi-
                 cating  the  nonzero  elements  in Z. The i-th eigenvector is
                 nonzero only in elements ISUPPZ( 2*i-1 ) through ISUPPZ(  2*i
                 ).


       WORK (workspace)
                 On  exit, if INFO = 0, WORK(1) returns the optimal (and mini-
                 mal) LWORK.


       LWORK (input)
                 The dimension of the array WORK.  LWORK >= 20*N.

                 If LWORK = -1, then a workspace query is assumed; the routine
                 only  calculates  the optimal size of the WORK array, returns
                 this value as the first entry of the WORK array, and no error
                 message related to LWORK is issued by XERBLA.


       IWORK (workspace/output)
                 On exit, if INFO = 0, IWORK(1) returns the optimal (and mini-
                 mal) LIWORK.


       LIWORK (input)
                 The dimension of the array IWORK.  LIWORK >= 10*N.

                 If LIWORK = -1, then a workspace query is assumed;  the  rou-
                 tine  only  calculates  the  optimal size of the IWORK array,
                 returns this value as the first entry of the IWORK array, and
                 no error message related to LIWORK is issued by XERBLA.


       INFO (output)
                 = 0:  successful exit
                 < 0:  if INFO = -i, the i-th argument had an illegal value
                 > 0:  Internal error

FURTHER DETAILS
       Based on contributions by
          Inderjit Dhillon, IBM Almaden, USA
          Osni Marques, LBNL/NERSC, USA
          Ken Stanley, Computer Science Division, University of
            California at Berkeley, USA




                                  7 Nov 2015                        dstevr(3P)