dormr2 - multiply a general matrix by the orthogonal matrix from a RQ factorization determined by sgerqf (unblocked algorithm)
SUBROUTINE DORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO ) CHARACTER*1 SIDE, TRANS INTEGER INFO, K, LDA, LDC, M, N DOUBLE PRECISION A(LDA,*), C(LDC,*), TAU(*), WORK(*) SUBROUTINE DORMR2_64( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO ) CHARACTER*1 SIDE, TRANS INTEGER*8 INFO, K, LDA, LDC, M, N DOUBLE PRECISION A(LDA,*), C(LDC,*), TAU(*), WORK(*) F95 INTERFACE SUBROUTINE ORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO ) INTEGER :: M, N, K, LDA, LDC, INFO CHARACTER(LEN=1) :: SIDE, TRANS REAL(8), DIMENSION(:,:) :: A, C REAL(8), DIMENSION(:) :: TAU, WORK SUBROUTINE ORMR2_64( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO ) INTEGER(8) :: M, N, K, LDA, LDC, INFO CHARACTER(LEN=1) :: SIDE, TRANS REAL(8), DIMENSION(:,:) :: A, C REAL(8), DIMENSION(:) :: TAU, WORK C INTERFACE #include <sunperf.h> void dormr2 (char side, char trans, int m, int n, int k, double *a, int lda, double *tau, double *c, int ldc, int *info); void dormr2_64 (char side, char trans, long m, long n, long k, double *a, long lda, double *tau, double *c, long ldc, long *info);
Oracle Solaris Studio Performance Library dormr2(3P)
NAME
dormr2 - multiply a general matrix by the orthogonal matrix from a RQ
factorization determined by sgerqf (unblocked algorithm)
SYNOPSIS
SUBROUTINE DORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
INFO )
CHARACTER*1 SIDE, TRANS
INTEGER INFO, K, LDA, LDC, M, N
DOUBLE PRECISION A(LDA,*), C(LDC,*), TAU(*), WORK(*)
SUBROUTINE DORMR2_64( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
INFO )
CHARACTER*1 SIDE, TRANS
INTEGER*8 INFO, K, LDA, LDC, M, N
DOUBLE PRECISION A(LDA,*), C(LDC,*), TAU(*), WORK(*)
F95 INTERFACE
SUBROUTINE ORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO
)
INTEGER :: M, N, K, LDA, LDC, INFO
CHARACTER(LEN=1) :: SIDE, TRANS
REAL(8), DIMENSION(:,:) :: A, C
REAL(8), DIMENSION(:) :: TAU, WORK
SUBROUTINE ORMR2_64( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
INFO )
INTEGER(8) :: M, N, K, LDA, LDC, INFO
CHARACTER(LEN=1) :: SIDE, TRANS
REAL(8), DIMENSION(:,:) :: A, C
REAL(8), DIMENSION(:) :: TAU, WORK
C INTERFACE
#include <sunperf.h>
void dormr2 (char side, char trans, int m, int n, int k, double *a, int
lda, double *tau, double *c, int ldc, int *info);
void dormr2_64 (char side, char trans, long m, long n, long k, double
*a, long lda, double *tau, double *c, long ldc, long *info);
PURPOSE
dormr2 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q**T* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q**T if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k elemen-
tary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DGERQF. Q is of order m if SIDE = 'L' and of order n if
SIDE = 'R'.
ARGUMENTS
SIDE (input)
SIDE is CHARACTER*1
= 'L': apply Q or Q**T from the Left
= 'R': apply Q or Q**T from the Right
TRANS (input)
TRANS is CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input)
M is INTEGER
The number of rows of the matrix C. M >= 0.
N (input)
N is INTEGER
The number of columns of the matrix C. N >= 0.
K (input)
K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input)
A is DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGERQF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input)
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input)
TAU is DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGERQF.
C (input/output)
C is DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input)
LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (output)
WORK is DOUBLE PRECISION array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output)
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
7 Nov 2015 dormr2(3P)