zpotrs - solve a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF
SUBROUTINE ZPOTRS(UPLO, N, NRHS, A, LDA, B, LDB, INFO) CHARACTER*1 UPLO DOUBLE COMPLEX A(LDA,*), B(LDB,*) INTEGER N, NRHS, LDA, LDB, INFO SUBROUTINE ZPOTRS_64(UPLO, N, NRHS, A, LDA, B, LDB, INFO) CHARACTER*1 UPLO DOUBLE COMPLEX A(LDA,*), B(LDB,*) INTEGER*8 N, NRHS, LDA, LDB, INFO F95 INTERFACE SUBROUTINE POTRS(UPLO, N, NRHS, A, LDA, B, LDB, INFO) CHARACTER(LEN=1) :: UPLO COMPLEX(8), DIMENSION(:,:) :: A, B INTEGER :: N, NRHS, LDA, LDB, INFO SUBROUTINE POTRS_64(UPLO, N, NRHS, A, LDA, B, LDB, INFO) CHARACTER(LEN=1) :: UPLO COMPLEX(8), DIMENSION(:,:) :: A, B INTEGER(8) :: N, NRHS, LDA, LDB, INFO C INTERFACE #include <sunperf.h> void zpotrs(char uplo, int n, int nrhs, doublecomplex *a, int lda, dou- blecomplex *b, int ldb, int *info); void zpotrs_64(char uplo, long n, long nrhs, doublecomplex *a, long lda, doublecomplex *b, long ldb, long *info);
Oracle Solaris Studio Performance Library zpotrs(3P)
NAME
zpotrs - solve a system of linear equations A*X = B with a Hermitian
positive definite matrix A using the Cholesky factorization A = U**H*U
or A = L*L**H computed by ZPOTRF
SYNOPSIS
SUBROUTINE ZPOTRS(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
CHARACTER*1 UPLO
DOUBLE COMPLEX A(LDA,*), B(LDB,*)
INTEGER N, NRHS, LDA, LDB, INFO
SUBROUTINE ZPOTRS_64(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
CHARACTER*1 UPLO
DOUBLE COMPLEX A(LDA,*), B(LDB,*)
INTEGER*8 N, NRHS, LDA, LDB, INFO
F95 INTERFACE
SUBROUTINE POTRS(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
CHARACTER(LEN=1) :: UPLO
COMPLEX(8), DIMENSION(:,:) :: A, B
INTEGER :: N, NRHS, LDA, LDB, INFO
SUBROUTINE POTRS_64(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
CHARACTER(LEN=1) :: UPLO
COMPLEX(8), DIMENSION(:,:) :: A, B
INTEGER(8) :: N, NRHS, LDA, LDB, INFO
C INTERFACE
#include <sunperf.h>
void zpotrs(char uplo, int n, int nrhs, doublecomplex *a, int lda, dou-
blecomplex *b, int ldb, int *info);
void zpotrs_64(char uplo, long n, long nrhs, doublecomplex *a, long
lda, doublecomplex *b, long ldb, long *info);
PURPOSE
zpotrs solves a system of linear equations A*X = B with a Hermitian
positive definite matrix A using the Cholesky factorization A = U**H*U
or A = L*L**H computed by ZPOTRF.
ARGUMENTS
UPLO (input)
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) The order of the matrix A. N >= 0.
NRHS (input)
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) The triangular factor U or L from the Cholesky factorization
A = U**H*U or A = L*L**H, as computed by ZPOTRF.
LDA (input)
The leading dimension of the array A. LDA >= max(1,N).
B (input/output)
On entry, the right hand side matrix B. On exit, the solu-
tion matrix X.
LDB (input)
The leading dimension of the array B. LDB >= max(1,N).
INFO (output)
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
7 Nov 2015 zpotrs(3P)