dgeqrt3 - recursively compute a QR factorization of a general real matrix using the compact WY representation of Q
RECURSIVE SUBROUTINE DGEQRT3(M, N, A, LDA, T, LDT, INFO) INTEGER INFO, LDA, M, N, LDT DOUBLE PRECISION A(LDA,*), T(LDT,*) RECURSIVE SUBROUTINE DGEQRT3_64(M, N, A, LDA, T, LDT, INFO) INTEGER*8 INFO, LDA, M, N, LDT DOUBLE PRECISION A(LDA,*), T(LDT,*) F95 INTERFACE RECURSIVE SUBROUTINE GEQRT3(M, N, A, LDA, T, LDT, INFO) INTEGER :: M, N, LDA, LDT, INFO REAL(8), DIMENSION(:,:) :: A, T RECURSIVE SUBROUTINE GEQRT3_64(M, N, A, LDA, T, LDT, INFO) INTEGER(8) :: M, N, LDA, LDT, INFO REAL(8), DIMENSION(:,:) :: A, T C INTERFACE #include <sunperf.h> void dgeqrt3 (int m, int n, double *a, int lda, double *t, int ldt, int *info); void dgeqrt3_64 (long m, long n, double *a, long lda, double *t, long ldt, long *info);
Oracle Solaris Studio Performance Library dgeqrt3(3P)
NAME
dgeqrt3 - recursively compute a QR factorization of a general real
matrix using the compact WY representation of Q
SYNOPSIS
RECURSIVE SUBROUTINE DGEQRT3(M, N, A, LDA, T, LDT, INFO)
INTEGER INFO, LDA, M, N, LDT
DOUBLE PRECISION A(LDA,*), T(LDT,*)
RECURSIVE SUBROUTINE DGEQRT3_64(M, N, A, LDA, T, LDT, INFO)
INTEGER*8 INFO, LDA, M, N, LDT
DOUBLE PRECISION A(LDA,*), T(LDT,*)
F95 INTERFACE
RECURSIVE SUBROUTINE GEQRT3(M, N, A, LDA, T, LDT, INFO)
INTEGER :: M, N, LDA, LDT, INFO
REAL(8), DIMENSION(:,:) :: A, T
RECURSIVE SUBROUTINE GEQRT3_64(M, N, A, LDA, T, LDT, INFO)
INTEGER(8) :: M, N, LDA, LDT, INFO
REAL(8), DIMENSION(:,:) :: A, T
C INTERFACE
#include <sunperf.h>
void dgeqrt3 (int m, int n, double *a, int lda, double *t, int ldt, int
*info);
void dgeqrt3_64 (long m, long n, double *a, long lda, double *t, long
ldt, long *info);
PURPOSE
dgeqrt3 recursively computes a QR factorization of a real M-by-N matrix
A, using the compact WY representation of Q.
Based on the algorithm of Elmroth and Gustavson, IBM J. Res. Develop.
Vol 44 No. 4 July 2000.
ARGUMENTS
M (input)
M is INTEGER
The number of rows of the matrix A. M >= N.
N (input)
N is INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output)
A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the real M-by-N matrix A. On exit, the elements on
and above the diagonal contain the N-by-N upper triangular
matrix R; the elements below the diagonal are the columns of
V. See below for further details.
LDA (input)
LDA is INTEGER
The leading dimension of the array A.
LDA >= max(1,M).
T (output)
T is DOUBLE PRECISION array, dimension (LDT,N)
The N-by-N upper triangular factor of the block reflector.
The elements on and above the diagonal contain the block
reflector T; the elements below the diagonal are not used.
See below for further details.
LDT (input)
LDT is INTEGER
The leading dimension of the array T.
LDT >= max(1,N).
INFO (output)
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
FURTHER DETAILS
The matrix V stores the elementary reflectors H(i) in the i-th column
below the diagonal. For example, if M=5 and N=3, the matrix V is
V = ( 1 )
( v1 1 )
( v1 v2 1 )
( v1 v2 v3 )
where the vi's represent the vectors which define H(i), which are returned
in the matrix A. The 1's along the diagonal of V are not stored in A. The
block reflector H is then given by
H = I - V * T * V**T
where V**T is the transpose of V.
For details of the algorithm, see Elmroth and Gustavson (cited above).
7 Nov 2015 dgeqrt3(3P)