zgeru - perform the rank 1 operation A := alpha*x*y' + A
SUBROUTINE ZGERU(M, N, ALPHA, X, INCX, Y, INCY, A, LDA) DOUBLE COMPLEX ALPHA DOUBLE COMPLEX X(*), Y(*), A(LDA,*) INTEGER M, N, INCX, INCY, LDA SUBROUTINE ZGERU_64(M, N, ALPHA, X, INCX, Y, INCY, A, LDA) DOUBLE COMPLEX ALPHA DOUBLE COMPLEX X(*), Y(*), A(LDA,*) INTEGER*8 M, N, INCX, INCY, LDA F95 INTERFACE SUBROUTINE GER(M, N, ALPHA, X, INCX, Y, INCY, A, LDA) COMPLEX(8) :: ALPHA COMPLEX(8), DIMENSION(:) :: X, Y COMPLEX(8), DIMENSION(:,:) :: A INTEGER :: M, N, INCX, INCY, LDA SUBROUTINE GER_64(M, N, ALPHA, X, INCX, Y, INCY, A, LDA) COMPLEX(8) :: ALPHA COMPLEX(8), DIMENSION(:) :: X, Y COMPLEX(8), DIMENSION(:,:) :: A INTEGER(8) :: M, N, INCX, INCY, LDA C INTERFACE #include <sunperf.h> void zgeru(int m, int n, doublecomplex *alpha, doublecomplex *x, int incx, doublecomplex *y, int incy, doublecomplex *a, int lda); void zgeru_64(long m, long n, doublecomplex *alpha, doublecomplex *x, long incx, doublecomplex *y, long incy, doublecomplex *a, long lda);
Oracle Solaris Studio Performance Library zgeru(3P)
NAME
zgeru - perform the rank 1 operation A := alpha*x*y' + A
SYNOPSIS
SUBROUTINE ZGERU(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
DOUBLE COMPLEX ALPHA
DOUBLE COMPLEX X(*), Y(*), A(LDA,*)
INTEGER M, N, INCX, INCY, LDA
SUBROUTINE ZGERU_64(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
DOUBLE COMPLEX ALPHA
DOUBLE COMPLEX X(*), Y(*), A(LDA,*)
INTEGER*8 M, N, INCX, INCY, LDA
F95 INTERFACE
SUBROUTINE GER(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
COMPLEX(8) :: ALPHA
COMPLEX(8), DIMENSION(:) :: X, Y
COMPLEX(8), DIMENSION(:,:) :: A
INTEGER :: M, N, INCX, INCY, LDA
SUBROUTINE GER_64(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
COMPLEX(8) :: ALPHA
COMPLEX(8), DIMENSION(:) :: X, Y
COMPLEX(8), DIMENSION(:,:) :: A
INTEGER(8) :: M, N, INCX, INCY, LDA
C INTERFACE
#include <sunperf.h>
void zgeru(int m, int n, doublecomplex *alpha, doublecomplex *x, int
incx, doublecomplex *y, int incy, doublecomplex *a, int lda);
void zgeru_64(long m, long n, doublecomplex *alpha, doublecomplex *x,
long incx, doublecomplex *y, long incy, doublecomplex *a,
long lda);
PURPOSE
zgeru performs the rank 1 operation A := alpha*x*y' + A where alpha is
a scalar, x is an m element vector, y is an n element vector and A is
an m by n matrix.
ARGUMENTS
M (input)
On entry, M specifies the number of rows of the matrix A. M
>= 0. Unchanged on exit.
N (input)
On entry, N specifies the number of columns of the matrix A.
N >= 0. Unchanged on exit.
ALPHA (input)
On entry, ALPHA specifies the scalar alpha. Unchanged on
exit.
X (input)
( 1 + ( m - 1 )*abs( INCX ) ). Before entry, the incremented
array X must contain the m element vector x. Unchanged on
exit.
INCX (input)
On entry, INCX specifies the increment for the elements of X.
INCX must not be zero. Unchanged on exit.
Y (input)
( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented
array Y must contain the n element vector y. Unchanged on
exit.
INCY (input)
On entry, INCY specifies the increment for the elements of Y.
INCY must not be zero. Unchanged on exit.
A (input/output)
Before entry, the leading m by n part of the array A must
contain the matrix of coefficients. On exit, A is overwritten
by the updated matrix.
LDA (input)
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA >= max( 1, m ). Unchanged
on exit.
7 Nov 2015 zgeru(3P)