dorgqr - N real matrix Q with orthonormal columns,
SUBROUTINE DORGQR(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO) INTEGER M, N, K, LDA, LDWORK, INFO DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*) SUBROUTINE DORGQR_64(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO) INTEGER*8 M, N, K, LDA, LDWORK, INFO DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*) F95 INTERFACE SUBROUTINE ORGQR(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO) INTEGER :: M, N, K, LDA, LDWORK, INFO REAL(8), DIMENSION(:) :: TAU, WORK REAL(8), DIMENSION(:,:) :: A SUBROUTINE ORGQR_64(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO) INTEGER(8) :: M, N, K, LDA, LDWORK, INFO REAL(8), DIMENSION(:) :: TAU, WORK REAL(8), DIMENSION(:,:) :: A C INTERFACE #include <sunperf.h> void dorgqr(int m, int n, int k, double *a, int lda, double *tau, int *info); void dorgqr_64(long m, long n, long k, double *a, long lda, double *tau, long *info);
Oracle Solaris Studio Performance Library dorgqr(3P)
NAME
dorgqr - generate an M-by-N real matrix Q with orthonormal columns,
SYNOPSIS
SUBROUTINE DORGQR(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)
INTEGER M, N, K, LDA, LDWORK, INFO
DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)
SUBROUTINE DORGQR_64(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)
INTEGER*8 M, N, K, LDA, LDWORK, INFO
DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)
F95 INTERFACE
SUBROUTINE ORGQR(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)
INTEGER :: M, N, K, LDA, LDWORK, INFO
REAL(8), DIMENSION(:) :: TAU, WORK
REAL(8), DIMENSION(:,:) :: A
SUBROUTINE ORGQR_64(M, N, K, A, LDA, TAU, WORK, LDWORK,
INFO)
INTEGER(8) :: M, N, K, LDA, LDWORK, INFO
REAL(8), DIMENSION(:) :: TAU, WORK
REAL(8), DIMENSION(:,:) :: A
C INTERFACE
#include <sunperf.h>
void dorgqr(int m, int n, int k, double *a, int lda, double *tau, int
*info);
void dorgqr_64(long m, long n, long k, double *a, long lda, double
*tau, long *info);
PURPOSE
dorgqr generates an M-by-N real matrix Q with orthonormal columns,
which is defined as the first N columns of a product of K elementary
reflectors of order M
Q = H(1) H(2) . . . H(k)
as returned by DGEQRF.
ARGUMENTS
M (input) The number of rows of the matrix Q. M >= 0.
N (input) The number of columns of the matrix Q. M >= N >= 0.
K (input) The number of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.
A (input/output)
On entry, the i-th column must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by DGEQRF in the first k columns of its array argu-
ment A. On exit, the M-by-N matrix Q.
LDA (input)
The first dimension of the array A. LDA >= max(1,M).
TAU (input)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQRF.
WORK (workspace)
On exit, if INFO = 0, WORK(1) returns the optimal LDWORK.
LDWORK (input)
The dimension of the array WORK. LDWORK >= max(1,N). For
optimum performance LDWORK >= N*NB, where NB is the optimal
blocksize.
If LDWORK = -1, then a workspace query is assumed; the rou-
tine only calculates the optimal size of the WORK array,
returns this value as the first entry of the WORK array, and
no error message related to LDWORK is issued by XERBLA.
INFO (output)
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an illegal value
7 Nov 2015 dorgqr(3P)